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Abstract Humans have the ability to perceive kinetic
depth effects, i.e., to perceived 3D shapes from 2D
projections of rotating 3D objects.
based on a variety of visual cues such as lighting
and shading effects. However, when such cues are
weak or missing, perception can become faulty, as
demonstrated by the famous silhouette illusion example
of the spinning dancer. Inspired by this, we establish

This process is

objective and subjective evaluation models of rotated
3D objects by taking their projected 2D images as
input. We investigate five different cues:
luminance, shading, rotation speed, perspective, and
color difference between the objects and background.
In the objective evaluation model, we first apply

ambient

3D reconstruction algorithms to obtain an objective
reconstruction quality metric, and then use quadratic
stepwise regression analysis to determine weights of
depth cues to represent the reconstruction quality. In
the subjective evaluation model, we use a comprehensive
user study to reveal correlations with reaction time
and accuracy, rotation speed, and perspective. The
two evaluation models are generally consistent, and
potentially of benefit to inter-disciplinary research into
visual perception and 3D reconstruction.
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1 Introduction

Mechanisms of human perception of the 3D world
have long been studied. In the early 17th century,
artists developed a whole system of stimuli of
monocular depth perception based especially on
shading and transparency [1]. Loss of stimuli related
to depth perception leads to a variety of visual
illusions, such as the Pulfrich effect [2]. Here, with a
dark filter on the right eye, dots moving to the right
seem to be closer to participants than dots moving
to the left, even though all the dots are actually at
the same distance. This is caused by slower human
perception of darker objects.

When a 3D object is rotating around a fixed axis,
humans are capable of perceiving the shape of the
object from its 2D projections. This is called the
kinetic depth effect [4].
light above the object, humans can only perceive

However, when there is no

partial 3D information from the varying silhouette
of the kinetic object over time, which easily leads
to ambiguous understanding of the 3D object. One
typical example of this phenomenon is the spinning
dancer [3, 5] (see Fig. 1 for sample frames). The

Fig. 1 3 of 34 frames from the original animation of the spinning
dancer [3], courtesy of Nobuyuki Kayahara. Due to a lack of visual cues,
humans are confused as to whether the dancer is rotating clockwise
or counterclockwise.
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dancer is observed to be spinning clockwise by
some viewers and counterclockwise by others. Such
ambiguity implies that more cues are needed for
humans to make accurate depth judgements for 3D
objects.
timing [7], and speed and axis of rotation [8] have
been widely studied by researchers. In addition,
perspective effects also affect the accuracy of direction
judgements [9].

In this paper, we make in-depth investigations into
how visual cues influence the perception of kinetic
depth effects, using both objective computational

Visual cues such as occlusion [6], frame

modeling and subjective perceptual analysis. We
formulate and quantify visual cues from both 3D
objects and their surrounding environment. On
one hand, we make a comprehensive subjective
evaluation to correlate subjective depth judgement
for a 3D object with its visual conditions. On the
other hand, as depth perception largely depends
on the quality of mental shape reconstruction, we
also propose an objective evaluation method based
on 3D computational modeling [10]. This allows
us to quantify the impacts of the involved visual
cues. The impact factors are determined by solving
a multivariate quadratic regression problem. Finally,
we analyze the interrelations between the proposed
subjective and objective evaluation models, and
consider the consistency of impacts of visual cues
on these models.
In summary, our work makes the following major
contributions:
e a novel objective evaluation of kinetic depth
effects based on multi-view stereo reconstruction,
e a novel subjective evaluation of kinetic depth
effects based on a carefully designed user study,
and
e a detailed analysis of how visual cues affect depth
perception based on these subjective and objective
evaluations.

2 Related work

Our work focuses on objective computational
modeling and subjective analysis of 3D perception of

kinetic depth effects under different visual conditions.

We first discuss related work on visual perception
using psychological and computational approaches,
and then briefly describe the relevant reconstruction
techniques employed in this work.

2.1 Psychological research on shape perception

For monocular vision, shading effects contain rich
information [1]. Compared with diffuse shading,
specular shading helps more to reduce underestimates
of cylinder depth by subjects [11]. However, the
shading effect can be ambiguous in some cases. For
example, when the illumination direction is unknown,
it is hard to disambiguate shape convexities and
concavities; humans tend to assume that illumination
comes from above [12]. Besides, when the level
of overall illumination is low, effect of shadows is
generally assumed to be determined by the overall
illumination [13].

Motion information also benefits shape perception.
The inherent ambiguity of depth order in projected
images of 3D objects can be resolved by dynamic
occlusion [14]. Perspective also gives rich information
about 3D objects during this process [15]. The human
visual system can infer 3D shapes from 2D projections
of rotated objects [4], interpolating the intervening
smooth motion from pairs of images of rotated
objects [16].

Color information is very important not only in
immersive scene representation [17-20] but also in
psychological depth perception. Isono and Yasuda
[21] found that chromatic channels can contribute
to depth perception using a prototype flicker-free
fieldsequential stereoscopic television system. Guibal
and Dresp [22] realized that color effects are largely
influenced by luminance contrast and stimulus
geometry. When shape stimuli are not strong, color
can give an illusion of closeness [23].

2.2 Computational visual perception

Computational visual perception has been extensively
studied in the computer graphics community. Here we
briefly describe the most relevant work on perception-
based 2D image processing and 3D modeling.

In terms of 2D images, Chu et al. [24] presented a
computational framework to synthesize camouflage
images that can hide one or more temporally
unnoticed figures in the primary image. Tong et
al. [25] proposed a hidden image framework that
can embed secondary objects within a primary image
as a form of artistic expression. The edges of the
object to be hidden are firstly detected, and then
an image blending based optimization is applied
to perform image transformation as well as object
embedding. The study of kinetic depth effects often
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uses subjective response [26], and some researchers
also use the judgement of the rotation direction as
the response [9].

Like for image-based content embedding and hiding,
3D objects can be embedded into 2D images [27];
the objects can be easily detected by humans, but
not by an automatic method. Researchers have also
generated various mosaic effects on both images [28]
and 3D surfaces [29]. A computational model for
the psychological phenomenon of change blindness
is investigated in Ref. [30]. As change blindness is
caused by failing to store visual information in short-
term memory, the authors model the influence of
long-range contextual complexity, allowing them to
synthesize images with a given degree of blindness.
Illusory motion is also studied as self-animating
images in Ref. [31]. In order to computationally
model the human motion perception of a static image,
repeated asymmetric patterns are optimally generated
on streamlines of a specified vector field. Tong et
al. [32] created self-moving 3D objects using the
hollow-face illusion from input character animation,
where the surface’s gradient is manipulated to fit the
motion illusion. There is also research into rendering,
designing, and navigating impossible 3D models [33—
35].
impossible models, our work focuses on evaluating
the 3D perception of rotated objects.

In contrast to investigating those seemingly

2.3 Multi-view stereo reconstruction

Multi-view 3D reconstruction and 3D point cloud
registration are fundamental in computer graphics

and computer vision. Comprehensive surveys on these
topics can be found in Refs. [36, 37]. The well-known
structure-from-motion [10] can effectively recover
camera poses and further generate a sparse 3D point
cloud by making use of multiple images of a scene
or objects. Moreover, multi-view stereo algorithms
[38] can reconstruct a fully textured surface of the
scene. We employ such computational techniques
to evaluate 3D reconstruction quality under various
environmental conditions.

3 Overview

3.1 Approach

Our goal is to evaluate the influence of various visual
conditions on kinetic depth effects, including the
ambient luminance, shading, perspective, rotation
speed, and color difference between the object and
background.

For both the human visual system and image-
based 3D reconstruction techniques, the input visual
information usually takes the form of projected 2D
images. Thus, by using a set of projected 2D images
of the 3D objects under the chosen conditions, we
investigate the shape perceived by human participants
and the shape produced by multi-view stereo 3D
reconstruction. As well as measuring the perception
of kinetic depth effects using our objective and
subjective evaluation models, we also investigate the
correlations between these two different methods.
Our approach is outlined in Fig. 2.
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Fig. 2 Our approach. We project the input 3D objects onto 2D image planes under specified conditions (lighting, projection mode, rotation
speed, etc.), which are fed into constructed objective and subjective evaluation models. Analysis reveals interesting correlations between depth

perception of rotated 3D objects and the visual conditions.
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3.2 Dataset

Each 3D object is rotated around a fixed vertical
axis passing through the geometric center of the
object, and we sample projected 2D images at an
angular interval of #. As the frame rate when
displaying projected images is fixed, changing the
sampling angle interval causes a changing rotation
speed of the object. We can obtain such datasets
under different visual conditions as the images are
explicitly rendered. Specifically, we manipulate the
ambient luminance by adjusting ambient lights, and
control shading by changing diffuse lights. We
control perspective by selecting either orthogonal or

perspective projection mode, which affects perception.

We also control the color difference between the object
and the background; predefined color pairs are used
to generate the colors of the background and the
3D object (see Section 4.1). Table 1 summarizes
the parameters used. Using such a dataset generated
under controlled conditions, we can then assess the 3D
perception of the rotated object using the following
two evaluation models.

3.3 Objective evaluation model

This model utilizes the reconstruction quality of the
input 3D object as the basis for evaluation. First,
using the projected 2D images of the 3D object
under specified visual conditions, we reconstruct a
point cloud using multi-view stereo reconstruction
algorithms. Then, we develop a method to measure
the quality of reconstruction of the original 3D object
by the point cloud (see Section 4.2). Finally, we
analyze the effects of different visual conditions in
detail (see Section 4.3).

3.4 Subjective evaluation model

Directly measuring 3D reconstruction in the brains of
human subjects is difficult. Based on the observation
that if humans successfully mentally reconstruct
a rotated object, it is easy for them to tell the
direction of rotation; in our study, the time and
accuracy of direction judgements are used as proxies

Table 1 Control parameters for generating 2D projected images

0 Angular interval of 2D projection

o Lightness in HSL color space (0, 0, «), used as diffuse
light intensity

Lightness in HSL color space (0, 0, 3), used as global
ambient light intensity

D Color difference between object and background

to measure the quality of depth perception. We
first display rotating objects with the same set of
projected images as used for 3D reconstruction in the
objective evaluation, and ask participants to judge
the rotation direction of the object. Then we consider
extreme situations in which image sequences could
not be reconstructed well, including overexposure, low
lighting levels, and overly fast rotation. We analyze
the results in terms of the accuracy and the reaction
time of direction judgements (see Section 5.5).

4 Objective evaluation

Our objective evaluation process includes four steps:
generating 2D images of 3D objects under various
conditions, reconstructing 3D shapes of objects
based on the generated images, quantifying the
reconstruction quality of the 3D objects, and fitting
weighting factors for depth cues by multivariate
quadratic regression optimization.

4.1 Parameter selection and image set

generation

In order to generate images of 3D objects under
various controlled conditions, we need to select the
parameter values to determine the depth cues. Firstly,
we normalize the size of each 3D object to have a
unit bounding box centered at the origin. Then, we
import the object into a virtual scene, display it under
orthogonal projection, and set a fixed-point light. The
line between the light and the geometric center of the
object is perpendicular to the rotation axis, and the
distance between the light and the geometric center
of the object is ten units. Since in openM VG the focal
length is a given parameter, considering perspective
projection mode in our objective evaluation is not that
meaningful, and in this study we restrict ourselves to
use of orthogonal projection.

We control the brightness of diffuse and ambient
lights as follows. We set the HSL value of the diffuse
light to be (0, 0, «), with seven set values for «,
corresponding to different luminance levels. We set
the HSL value of the ambient light to (0, 0, 8) with
six set values for 3 (see Table 2).

Table 2 Values of a and B used to control diffuse and ambient
lighting when generating image sets

« 0.5 0.8 1.1 1.4 1.7 2.0 2.3
B 0.0 0.5 1.0 1.5 2.0 2.5
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We sample projected 2D images as the 3D object
is rotated. We use four different sampling intervals
f = 0.209, 0.157, 0.126, and 0.105. For simplicity, we
use five fixed pairs of RGB values for the 3D object
and the background (see Table 3).

We calculate the difference of the chosen color pairs
using the following equation:

D(CB7CO) =

\/wr(TB —70)% + wg(gB — 90)? + wy(bs — bo)?

(1)

Here, Co = (ro0,90,bo) is the RGB color of
the object, Cp = (rB,gB,bp) is the color of the
background, and w,,ws,w, are weighting factors,
empirically set to (3,4,2). We generated image sets
for 15 different 3D objects under various conditions,

Table 83 Object and background colors and corresponding color
differences used when generating image sets

Object color Background color Color difference

(0.8, 0.8, 0.8) (0.8, 0.8, 0.8) 0.000
(0.8, 0.8, 0.8) (1.0, 1.0, 1.0) 0.600
(1.0, 0.9, 0.5) (0.7, 0.4, 1.0) 1.200
(0.8, 1.0, 0.6) (0.3, 0.0, 0.1) 2.291
(1.0, 0.4, 1.0) (0.0, 1.0, 0.0) 2.538
a=0.4
B=0.6

y=nl3

~
I
=]

D = 0.000

D =0.600

and selected three objects with a high reconstruction
success rate (30%). Finally, for each test object, we
generated a separate image set for each of 7 (shading)
x 6 (ambient luminance) x 4 (rotation speed) x 5
(color difference) conditions, at an image resolution of
800 x 600 pixels. Some examples are shown in Fig. 3.

4.2 3D reconstruction and quality assessment

We employ openMVG [39] and openMVS [38] to
process image sequences, and take the reconstructed
point clouds as input. We normalize the size of
each point cloud to the same bounding box as
for normalizing 3D objects. Then we match each
reconstructed point cloud to the original object.
Specifically, we use the sample consensus initial
alignment (SAC-IA) method [40] to provide an initial
alignment, and the iterative closest point (ICP) to
refine the alignment [41]. Finally, we compute the
Fuclidean fitness score i between the reconstructed

point cloud and the original object.
4.3 Objective evaluation results

We generated 2520 image sets for 3D reconstruction,
929 of which provided point clouds, while for 1591,
reconstruction failed. We use the following measure

Fig. 3 Example projected 2D images. First row: variations in diffuse light. Second row: variations in ambient light. Third row: images at an
angular interval of @ = xt/3; ~ is rotation from the initial orientation. Last row: various color differences.
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5~ (a,B.6,D) 0.868 ~ (1.4,0.0, 0.157, 2.291)

0.408 ~ (2.3, 0.0, 0.209, 0.600)  0.350 ~ (2.0, 2.5, 0.105, 2.291)

0.177 ~ (2.0, 0.0, 0.209, 1.200)

0.205 ~ (2.0, 2.5, 0.209, 2.291)

IR IS

0.718 ~ (0.8, 1.5, 0.157, 0.600)

e

0.307 ~ (0.5, 1.0, 0.157, 2.291)

0.151 ~ (1.4, 1.5, 0.126, 2.538)

0.589 ~ (0.5, 1.0, 0.105, 2.291) 0.485 ~ (1.4, 2.0, 0.126, 0.600)

0.266 ~ (2.3,1.0, 0.157,0.000) 0.233 ~ (2.0, 2.0, 0.209, 2.291)

L,

0.120 ~ (1.1,2.5, 0.209, 2.291) 0.045 - (1.7, 2.0, 0.105, 0.600)

4

Fig. 4 Given a 3D object (top-left) and specified visual conditions, we generate corresponding projected 2D images, and reconstruct 3D
shapes (other views) using multi-view stereo algorithms. We quantitatively measure the reconstruction quality for shape perception analysis.
Each view above gives the reconstruction quality and the corresponding rendering parameters.

s of reconstruction quality, based on the point cloud
distance p between a reconstructed point cloud and
the corresponding original point cloud:

s = —lg(n) 2)

Logarithmic processing is used to make the residuals
of our model normally distributed. Reconstruction
quality values are linearly normalized to the range
[0,1].  Given a set of reconstruction quality
samples S = {s1,...,8,}, we formulate a factor
analysis model with the following quadratic stepwise
regression:

P arg;nin(S— (Ma+X20+ 302+ A3 +D)) (3)
where A = {A1, A2, A\3, \4} are weighting coefficients
to balance the impact of the various control
We determined
the coefficients in the model using the standard least
squares method. Results are given in Table 4.

It can be seen that the model accounts for 10.3% of
the variation in reconstruction quality. Since the
reconstruction algorithm used here is not always
stable, the explanatory power of the model is limited.

parameters, and b is a constant.

The impact of each individual visual cues is now
analyzed in turn.

Table 4 Objective evaluation model results. p represents the
confidence probability of the parameter based on the standard
Student’s t-test

Coeflicient Value Std. Err.

b 0.3678* 0.041
AL 0.3593* 0.056
A2 —0.6361* 0.147
A3 —0.1234* 0.019
A4 —0.0278* 0.004

Observations 929
R? 0.103

* p <0.01

4.4 Shading

Shading and reconstruction quality follow a quadratic
function relationship (see Fig. 5), with A\; = 0.3593
(p<0.01), A3 = —0.1234 (p<0.01).

4.5 Ambient luminance

The (ambient luminance x shading) interaction is
significant with Ay, = —0.0278 (p<0.01). High
(ambient luminance x shading) levels contribute to
poor quality reconstruction. As shown in Fig. 6, the
fitted lines at different ambient light levels are not
parallel.
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Fig. 5 Correlation between 3D reconstruction quality and shading.
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Fig. 6 Significant (ambient luminance x shading) interaction.

4.6 Rotation speed

High rotation speed significantly contributes to poor
reconstruction quality (A2 = —0.6361, p < 0.01).
When 6 = 0.105, the mean value of S is 0.489; when
0 = 0.209, the mean value of S is 0.400.

4.7 Color difference

Color difference does not significantly affect the
reconstruction quality.

5 Subjective evaluation

As noted, humans can recover rotated 3D objects
from their 2D projections. The rotation direction of
3D objects can be an important clue to judging the
quality of their mental shape reconstruction. Based
on this, the following multi-factor experiment was
designed.

5.1 Participants

We recruited 35 participants; 34 participants (19
males and 15 females) successfully finished the test.

5.2 Procedure and materials

In the experiment, a set of images was continuously
displayed in full screen mode. The experiment was
conducted on a laptop with an Intel i5 8250U CPU
and 8 GB memory. We designed two types of study
as follows.

5.3 Study A

Here we explored the depth cue effect in general
situations. The range of cues was the same as for
the objective evaluation model, but we chose fewer
values for each cue (see Table 5) to ensure participants
could concentrate during the study. The projection
could be either orthogonal or perspective. Overall we
considered 144 conditions consisting of 3 (shading)
x 3 (ambient luminance) x 2 (rotation speed) X 4
(color difference) x 2 (projection mode). For each set
of conditions, we displayed three different objects.

5.4 Study B

Here we considered more extreme situations,
including low lighting levels, overexposure, and high
speed rotation, where we varied each condition while
keeping other cues fixed (see Table 6). The variables
used to represent each situation are shown in Table 7.
Test image sets generated are illustrated in Figs. 7
and 8. To simplify the problem, we only considered
orthogonal projection situations.

Every participant was asked to judge rotation
direction for each image set gemerated in Studies
A and B; each image set was judged only once.
The display order of each image set was random,
as was the rotation direction of each 3D object.

Table 5 Parameter values used in subjective evaluation model Study A

a 0.5 1.4 2.3
B 0.0 1.0 2.0

0 0.105 0.209

D 0.000 0.600 1.200 2.291

Table 6 Parameter values used in subjective evaluation model Study
B (for extreme conditions). Top to bottom: low lighting (8 zero),
overexposed (high value of «), fast rotation (normal values of «, 3)

0 Colors for
« B object & background
varying 0.0 0.157 (0.8,0.8,0.8),
(1.0, 1.0, 1.0)
2.3 varying 0.157 (0.8, 0.8, 0.8) ,
(1.0, 1.0, 1.0)
1.7 1.5 varying (0.8, 0.8, 0.8) ,
(1.0, 1.0, 1.0)
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Table 7 Parameter values used in the subjective evaluation model Study B (for extreme situations). Top to bottom: low lighting levels,

overexposure, and high speed rotation

a 0.00 0.05 0.10 0.15 0.20
B 2.7 2.9 3.1 3.3 3.5
0 1.047 0.785 0.628 0.524

0.449

0.30 0.35 0.40 0.45
3.7 3.9 4.1 4.3 4.5
0.393 0.349 0.314 0.286 0.262

a=0.00 a=0.15

a=0.30

a=0.75 a=0.90 a=1.05 a=1.20
Fig. 7 2D images under each different low lighting conditions.
=27 B=2.9 B=3.1 B=33 B=35
£=37 £=39 =41 f=43 f=45

Fig. 8 2D images under each individual overexposed condition.

To exclude viewing-from-above bias [1], we defined
rotation direction as Left and Right. From the
participants point of view, the rotation direction is
right if the closer part of a 3D object is moving to the
right, and vice versa. The images were displayed at
24 FPS. The maximum display time for each image
set did not exceed 5 s. The participants were given
time to practise before the formal experiment. The
entire experiment took about 15-20 min.

5.5 Subjective evaluation results

We recorded the judgements and reaction time of
all participants. We rank all reaction time in
ascending order and calculated the standard scores
(denoted 7), which correspond to the estimated
cumulative proportion of the reaction time. We use
the repeated measure analysis of variance (ANOVA)

method to determine the effect of cues on 7 under

different conditions. We calculated each participant’s
accuracy of judgement under each condition. Since
three objects were tested in each condition, the
participant’s judgement accuracy has four values, and
does not follow a normal distribution. Therefore, we
used ordinal logistic regression models to test the
effect of cues on the participant’s judgement accuracy.
In particular, we chose the complementary log—log link
function, since the participant’s judgement accuracy
mostly lay in 0.67-1.00 [42]:

®(z) = log(—log(1 — z)) (4)
We establish ordinal logistic regression models for
all situations, but only show those models with
significant results and skip the remainder.
5.5.1 Analysis of Study A

A five-way ANOVA method revealed the main effect
of rotation speed (F'(1,5028) = 38.11, p<0.01) on 7.
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Participants react faster under high rotation speed
conditions (M = —0.08, SD = 0.97) than at low
rotation speed (M = 0.05, SD = 1.00). We also
found a significant (perspective x rotation speed)
interaction (F(1,5028) = 6.19, p<0.05) on 7. At
high rotation speed, 7 is significantly lower with
perspective projection (M = —0.109, SD = 0.95)
than with orthogonal projection (M = —0.06, SD =
1.00). Because rotation speed and perspective only
have two levels, there is no need for Mauchly’s test
of sphericity. Other than the above phenomena,
we found no significant effect on the participant’s
judgement accuracy for the five cues considered in
our experiments.

5.5.2  Analysis of Study B

Low lighting levels. A one-way ANOVA reveals
the main effect of shading on 7 (F(9,340) = 2.668,
p<0.01), and Mauchly’s test of sphericity is not
significant (p = 0.579). Here higher « leads to lower
We established an ordinal logistic
regression model as follows:

reaction time.

( O(p1) =€ —nx*xa

{ P(p1+p2) =2 —n*a (5)
O(p1 +p2tp3) =€z —n*a

\ P1+pa+ps+pa=1

where p = {p1, p2, p3, p4} are the probabilities of each
value of the participant’s judgement accuracy (from
low to high), 7 is the weighting coefficient, and ¢ =
{€1,€2,€3} are constant values. For each case, the
value with highest probability is the predicted value
of the participant’s judgement accuracy.

We fitted the coefficients in the model with results
shown in Table 8. High « significantly contributes to
high judgement accuracy (n = 4.229, p<0.01). Hence
using strong shading in low lighting levels conditions
improves accuracy and accelerates reactions (see
Fig. 9).

Table 8 Results of ordinal logistic regression under low lighting
levels. p represents the confidence probability of the parameter based
on the Wald test

Coefficient Value Std. Err.
€1 —3.682* 0.515
€2 —2.039* 0.257
€3 —0.578* 0.177
n 4.229* 0.872
Observations 348
Nagelkerke’s R? 0.093

* p <0.01

0.5
04

03
0.265

0.2
0.1

0
0

-01

rg1ée
2

-0

Fig. 9 Variation of mean values of 7 with shading, ambient luminance,
and speed. Marked points represent significant differences under
pairwise comparison.

Overexposure. A one-way ANOVA reveals the
main effect of ambient luminance) (F'(9, 340) = 2.661,
p<0.01) on 7, and Mauchly’s test of sphericity is
not significant (p = 0.350). This means that the
covariance matrix assumption is met, and the result
of repeated measures ANOVA is robust. Participants
react faster when g = 2.7 (M = —0.17, SD = 1.07)
than when 8 = 4.5 (M = 0.24, SD = 0.94),
which implies that the higher ambient luminance in
overexposed conditions delays reactions (see Fig. 9).
We found no significant effect of ambient luminance
on judgement accuracy.

High speed rotation. Rotation speed has a
significant effect on 7 (F(9,340) = 7.627, p<0.01),
and Mauchly’s test of sphericity is not significant
(p = 0.162). In high rotation speed conditions,
lower rotation speed leads to faster reactions. We
established an ordinal logistic regression model again
as follows:

( O(p1) =¢e1— k%0
{ Q(p1 +p2) =2 — Kk x0 (©)
O(p1 +p2+p3) =e3—Kkx*0

\ pr+p2t+p3+pi=1
where p = {p1, p2, p3, pa} are the probabilities of each
value of the participant’s judgement accuracy (from
low to high), x is a weighting coefficient, and ¢ =
{e1,€2,e3} are constant values. For each case, the
value with highest probability is the predicted value
of judgement accuracy.

We fitted the coefficients in the model with results
shown in Table 9. High 6 significantly contributes
to low judgement accuracy (k = —1.353, p<0.01).
In high speed rotation conditions, increasing the
rotation speed reduces judgement accuracy and delays
reactions (see Fig. 9).
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Table 9 Results of ordinal logistic regression at high speed. p
represents the confidence probability of the parameter based on the
Wald test

Coefficient Value Std. Err
€1 —5.191* 0.581
€2 —4.266* 0.432
€3 —2.480* 0.320
K —1.353* 0.499
Observations 346
Nagelkerke’s R? 0.030

* p <0.01

6 Joint objective and subjective analysis

Based on objective computational modeling and
subjective perceptual evaluations, we next performed
a joint analysis on the 3D perception of rotated
objects.

6.1 Shading

For both objective and subjective evaluations, shading
has a significant effect on depth perception. In
the objective evaluation, shading and reconstruction
quality are correlated by a quadratic function. As
shading increases, the reconstruction quality first
improves and then declines. This coincides with
subjective evaluation as under low lighting levels,
greater shading improves judgement accuracy and
accelerates the observer’s reactions.

6.2 Ambient luminance

The depth cue from ambient luminance is also

effective in both objective and subjective evaluations.

In objective evaluation, the interaction of shading
and ambient luminance is significant. High (shading
x ambient luminance) levels contribute to poor
reconstruction. In the subjective evaluation, high
ambient luminance in overexposed cases can increase
observers’ reaction time.

6.3 Rotation speed

Rotation speed plays an important role in both
objective and subjective evaluations. In the objective
evaluation, increasing rotation speed decreases
reconstruction quality, which coincides with the result
of subjective evaluation that, in high speed conditions,
higher rotation speed decreases judgement accuracy.

However, in the subjective evaluation, increasing
the rotation speed accelerates users’ reaction time. A
possible reason is that, with higher rotation speeds,

participants receive more information within the same

time interval, stimulating the participants to make
a decision faster. In our experiments under general
situations, this acceleration is stronger than the delay
caused by uncertainty.

6.4 Perspective

In the subjective evaluation, (perspective X rotation
speed) interaction is significant. Participants react
faster under perspective projection conditions than
orthogonal.

6.5 Color difference

We found no significant effects caused by color
difference between objects and background in either
objective evaluation or subjective evaluation models.
As future work, we will test more color combinations
to further explore possible effects of color differences.

7 Discussion

We have analyzed the effects of different depth cues
on 3D perception of rotated 3D objects, broadening
the scope of previous studies. We also designed an
objective evaluation and a subjective evaluation to
make a thorough analysis.

However, there are also some shortcomings in
our design. In our objective evaluation, when
the depth cues in images were extremely weak,
3D reconstruction based on structure-from-motion
would be unstable caused by unexpected feature
matching. This common challenge limits the space
of our analysis model (R* = 10.3%). Moreover,
the subjective evaluation only uses judgement of
the direction of rotated objects as the response. In
future, we could use more 3D information. In our
experiments, reconstruction quality is closely related
to the kinds of 3D objects. This specific type of
influence on shape perception could also be further
analysed.

The analysis of the effect of depth cues guides us
how good reconstruction results can be achieved both
for humans and computers, such as rendering under
certain lighting conditions. The objective evaluation
also reveals the limitations of existing algorithms.

Our approach could benefit from more accurate
depth prediction and 3D reconstruction in
various challenging environments, which could
potentially be provided by recent deep learning-based
techniques, such as CNN-SLAM [43] and deep stereo
matching [44].
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8 Conclusions and future work

We have proposed two approaches to measuring the
quality of depth perception of kinetic depth effects,
with a detailed analysis of how visual cues affect
depth perception. Firstly, we generated a dataset of
images of rotating objects considering five depth cues:
ambient luminance, shading, rotation speed, and color
difference between objects and background. In the
objective evaluation, we applied 3D reconstruction
and measured reconstruction quality via distances
between reconstructed and original objects. In the
subjective evaluation, we invited participants to judge
the rotation direction of 3D objects by showing
them projected 2D images, and inferred perception
quality by their reaction time and accuracy. In our
experiments, we found both strong and dim lighting

significantly undermined the perception of depth.

High ambient illumination x shading level, rotation
speed, and orthogonal projection can also reduce
depth perception quality. Yet it is also interesting
that color difference does not have a significant effect
on depth perception in our experiments. In future,
we will take more depth cues into consideration and
develop a more precise quantitative model for more
complex situations. Using our new observations
to guide other 3D computational modeling would
also be an interesting avenue of future work. We
hope our study will inspire more inter-disciplinary
research into robust 3D reconstruction and human
visual perception.
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