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Figure 1: Starting from a single input mesh along with a set of non-linear constraints, our geometric framework allows local characterization,
navigation, and exploration of the corresponding shape space. The ®gure shows a sample design (right) created using our method, starting
from a "at circular mesh (left).

Abstract as follows: Geometric models are mapped to points in a high-
dimensional spadg®, where the models that satisfy the constraints

We present a general computational framework to locally charac- form a certain manifoldM  RP (shape space). Modeling pro-
terize any shape space of meshes implicitly prescribed by a col-ceeds by navigating in the practically useful parts of the manifold
lection of non-linear constraints. We computationally access such M, as prescribed by application speci®c quality measures. Such a
manifolds, typically of high dimension and co-dimension, through Mmanifold typically has high dimension and co-dimension, making it
@®rst and second order approximants, namely tangent spaces an€lif®cult to directly employ standard differential geometry concepts
quadratically parameterized osculant surfaces. Exploration andsuch as curvatures, especially in an ef®cient and computationally
navigation of desirable subspaces of the shape space with regardeasible manner. We locally approximate the manifold using tan-
to application speci®c quality measures are enabled using approxgent spaces and quadratically parameterized osculant surfaces, and
imants that are intrinsic to the underlying manifold and directly Propose how to computationally estimate the local curvature of the
computable in the parameter space of the osculant surface. Wemanifold to decide between the two representations.
demonstrate our framework on shape spaces of planar quad (P -
meshes, where each mesh face ispconStrained tg be (n?aarly)( p%—Ne demonstrate the utility of our framework for two concrete ex-
nar, and circular meshes, where each face has a circumcircle. We?MPle scenarios: (i) planar quad (PQ) meshes, i.e., meshes with
evaluate our framework for navigation and design exploration on a €2¢h guad face being planar, and (ii) circular meshes, i.e., meshes
variety of inputs, while keeping context speci®c properties such as 'Vith €ch quad face having a circumcircle. These meshes are attrac-
fairess, proximity to a reference surface, etc. tive geometry representations for archltectural freeform structures.

) T ) ~Although various computational techniques have been proposed for
Keywords: shape space, manifold navigation, design exploration, creating such meshes, effective exploration of the associated design
computational differential geometry, constrained mesh spaces remains largely unexplored (see [Ceccato et al. 2010] and
references therein). Starting from a single PQ/circular mesh, we
build the corresponding mesh manifold. Moving on the manifold
allows us to discovemneighboringPQ/circular meshes, while retain-
) . _ing aesthetic quality measures of the input model (see Figure 1).
In geometry processing, meshes are often speci®ed by a collectionyere we already point to the fact that planarity or circularity of
of non-linear constraints, typically associated with mesh faces or t5ces s in practice subject to user-speci®ed manufacturing toler-
edges. Exploring and navigating the corresponding shape spacegnces. Our framework is capable of staying strictly within a given
i.e., the possible meshes sharing the same combinatorics as the ing|erance band.

put mesh while satisfying the constraints, are widely believed to be
challenging. Even seemingly simple handle-driven deformations 0”9;”?' ¥ °pt‘fﬂizaﬁ°ﬁ‘ b
restricted to such shape spaces turn out to be challenging, and re ™% et o

main an active topic of research (see [Botsch et al. 2006; Kilian / /D/
L

et al. 2007; Botsch and Sorkine 2008; Gal et al. 2009]). //’,ﬁ’

& !
In this paper, we propose a mathematical framework for the de- ﬁ

sign and manipulation of non-linearly constrained meshes. Our
approach is based on the exploration of an appropriate shape space
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1 Introduction

Figure 2: Decoupling deformation and planarization is undesir-
able for shape design. Given a PQ mesh (left), the user prescribes
a deformation using vertex handles, and the deformed mesh is pla-
narized using an optimization approach [Liu et al. 2006]. The
result can be unsatisfactory (middle). In contrast, our PQ mesh
manifold exploration characterizes the (non-linearly constrained)
design space, allowing direct design (right).



In the context of mesh deformation, a nalve possibility is to ma- original
nipulate a constrained mesh using a standard mesh deformatior PQ mesh
tool, and then re-optimize to restore the prescribed constraints.
Unfortunately, due to the non-linearity of the constraints, a large
deformation followed by subsequent optimization can signi®cantly
change the deformed model, thus making it challenging to warp the
shape into desired forms (see Figure 2). An alternate solution is
to take small deformation steps, interleaved with optimization, but locall
the process is slow, cumbersome, dif®cult to control, and hampers defor?/ned W
the designer's work ow. More importantly, such an approach nei- PQ mesh

ther provides a good interface to restrict navigation to the implicitly

prescribed shape space, nor does it enable exploration of good del':i ure 3: Very local deformations of PQ meshes are possible while
formation directions while optimizing for desired quality measures. 9 - Very . Q p
preserving face planarity (see also Hoffmann [2011]). Such an ap-

proach, however, quickly destroys the aesthetics of the mesh, which
being visible in the beam layout forms an integral design element.

1.1 Overview and contributions. Given a single input mesh
along with a set of non-linear constraints (in terms of the mesh
vertices), our goal is to explore other meshes with the same con-
nectivity while respecting the prescribed constraints. We model the
problem by mapping the meshes to poirt& RP, whereD is 3
times the number of deformable vertices. Each constraint de®ne
a hypersurface ifRP, and the intersection of all these hypersur-
faces is our corresponding shape space, or mesh marilaldror
example, face planarity leads to the PQ mesh manifold. We lo-
cally navigate inM (in fact £ due to tolerances * closeNb) with

help of local approximations d¥1. These are tangent spaces and
quadratically parameterized surfaces having second order contac

with M (Section 2). Further, we report effective theoretical and .
( ) X and related structures such as developable strip models has been

computational tools for estimating curvatures of such non-trivial ited 1o the interl 4 subdivisi d optimizati h
spaces (i.e., spaces with high dim. normal spaces), and understand™!€C 10 the Intérieaved subdivision and optimization approac

the trade-offs between tangent and osculant space navigation. iu et al. 2006; Pottmann et al. 2008]. Only simple modi®cation
tools have been presented such as tranformations based on natural

While any point of the shape spalderepresents a valid constrained  invariance properties (e.g., projective, M"bius, Laguerre and Lie
mesh, only certain parts M are desirable according to application transformations) or on mesh parallelism [Pottmann et al. 2007].
speci®c quality measures, e.g., fairness of selected mesh polygong.he latter already indicated the dif®culties in generating useful
For design exploration, it is important to be able to ef®ciently iden- designs from existing ones. This has further been con®rmed by
tify such useful parts d¥1, and restrict navigation to such desirable recent work on very local PQ mesh deformations that are directly
regions. We enable this with the help of appropriate energy func- performed within a projective geometric framework [Hoffmann
tions and their second order approximations thairrésic to M 2011], but in our experience are not suitable as a basis of a design
(Section 3). Eigen-analysis of the intrinsic Hessians of energy func- modi®cation tool (see Figure 3).

tions turns out to be a highly effective tool for the identi®cation of

the good parts of the shape space for subsequent exploration (SeShape deformatiorSigni®cant research efforts have been devoted
Figures 1, 9, 14, 16, 17, and 19). In Section 4, using the example towards manipulation of triangle meshes using various linear and
of PQ meshes, we demonstrate our proposed framework for de-non-linear formulations (see survey [Botsch and Sorkine 2008]), or
sign exploration, optimization, and handle driven deformation with in presence of interrelations across feature curves [Gal et al. 2009].
boundary conditions, while conforming to prescribed constraints. |n case of triangles, however, planarity is trivially satis®ed. Other
Interestingly, the local approximants also provide a natural way to approaches include isometric, as-rigid-as possible or conformal de-
access the relative dif®culty of deforming various parts of the input formations (see [Gu and Yau 2008; Lipman et al. 2008] and the ref-
model (see Figure 11). In Section 5, we present exploration results erences therein). Unlike such methods, in addition to deformations,
for circular meshes and explorative design examples starting from we also want to support optimization and explorations restricted to
at meshes (see Figures 1 and 18). the implicitly prescribed shape space.

Our main contribution, in the context of geometry processing, o

is a computationally feasible yet mathematically precise formula- MOrphable modelsin the context of character animation and mod-
tion that allows navigation and exploration of non-linearly con- eling, researchers h_ave employgd statistical tools to Ie_arn principal
strained shape spaces, which are typically of high dimension and modes of quel variation. Starting from a representative t.emplate
co-dimension. Our focus is on the access to the variety of feasible and a collection of aligned models, morphable model learning tech-
designs meeting the speci®ed constraintsretbn the solution nigues have_ been effecpvely used for faces [Blar_lz and Vetter 1999],
of a single constrained optimization problem. In the context of ar- human bodies, and animation poses characterized as deformation
chitectural geometry, we unify two traditionally separate phases in gradients [Sumner et al. 2005]. In the context of shape analysis,

freeform design, namely, (i) shape design and (ii) rationalization in Huang et al. [2009] use eigen-modes of surface Hessians to learn
view of the actual fabrication. useful shape segmentations. Kilian et al. [2007] propose Rieman-

nian metrics for construction of useful shape spaces for design and
modeling of geometric shapes. None of these methods, however,
t.can be simply extended to characterize and explore the space of
nonlinearly constrained geometric models, which is the goal of our
work. Note that we explore the shape space as de®nedibgla
PQ meshesappeared ®rst in discrete differential geome- non-linearly constrained mesh, rather than a collection of meshes.
try (cf. [Bobenko and Suris 2008]) as discrete counterparts of Thus our research is fundamentally different from work in machine
so-called conjugate curve networks, in particular of the network learning, where shape manifolds are computed from input poses.

of principal curvature lines. The importance of PQ meshes for
freeform architecture led to the development of computational
Jools which are based on nonlinear optimization [Liu et al.
2006; Pottmann et al. 2007], since theoretically existent direct
constructions turned out to be either unstable or impractical. The
dif®culty in designing a PQ mesh is rooted in the fact that such a
mesh is strongly guided by the curvature behavior of an underlying
smooth surface. The layout of a PQ mesh on a given design surface
basically amounts to the design of a conjugate curve network on
[Zadravec et al. 2010]. So far, direct modeling of PQ meshes

1.2 Related work. Although there is little prior work in the area
of design and shape exploration of nonlinearly constrained geome
ric models, we brie'y present relevant research efforts.



Tangent space. A given mesh corresponds to a poikj 2 M.
The tangent space &l at xg is the intersection of then tangent
hyperplanes to the hypersurfacgs

The normal of an\G at X is along the gradierfiE;(xo), and thus

the normal spaceof M at a pointxg is spanned by the gradients
NEi(xo);i = 1;:::;m. At anyregular point of M, i.e., where the
gradients are linearly independent, we have a normal space of di-

deformati W2 - : . ;
g _ mensionm and a tangent space of dimensibri m. In practice

we remove any dependencies by computing a normal space basis
using SVD. The tangent space to the constrained mesh mahfold

is a linear space attached to the poigtontaining tangent vectors

t orthogonal to each deEi(xo) and is characterized as,

Tm(Xo) = fxo+ tjNET(xo) t=08i=1:::;mg (1)

s average displacement/vertex(mm)

Figure 4: A given PQ meskRy is a point on the PQ mesh manifold
M of all PQ meshes which share the same connectivity. Vetclprs
ing in the tangent space ap represent deformation ®elds (bottom-
left) on the original mesh that preserve face planarity up to ®rst
order. Typically, we can take non-trivial steps in such tangent di-
rections before the deviation from planaritgax jE;(x)j exceeds
fabrication limits, e.g.,10mm/m for glass panels (average panel
length is1m in all examples). In this example, mesh A and mesh
B meet fabrication bounds, but mesh C does not (all illustrations
show computed results).

Suppose the basis of the normal space at the current point
Xo is fng;ng;iii;nmg and the basis of the tangent space is
fer; e eo mg.p Then any tangent vector can be expressed
in the formt = ; uje; wherem = [uyUp ::: Upy mlf 2 RP!M
parameterizes the tangent space. Note thapresents a mesh
deformation ®eld that satis®es prescribed constraints up to ®rst
order (see Figure 4).

Osculant. Due to the non-linearity of constraints, tangent space
navigation may allow only small steps before one of the deviation
measuresE;(x)j exceeds the prescribed tolerance. Hence we seek
a better approximation. A simple option to obtain a 2nd order ap-
proximation is to ®rst compute the osculating paraboloid (2nd order
Given a single constrained mesh, our goal is to characterize, nav-Taylor approximation) for each of the constraint hypersurfages
igate, and explore the space of meshes sharing the same conne@nd then compute their intersection. Unfortunately, the algebraic
tivity, while maintaining the prescribed constraints, within a tol- computation of the intersection surface is cumbersome since the
erance margin. In this section, we formalize the notion of such intersection surface can be of ordét. 2instead, we derive a bet-
shape spacegnesh manifolds), and derive their local tangent and ter approximation in the form of a locally approximating surface
osculant approximations that subsequently form the basis of varioussharing second-order contact with the mesh manikéld Let this

2 Constrained Mesh Manifolds

exploration metaphors. approximating surface, henceforth simply referred to asotwi-
. . ) lant, be parameterized over the tangent spagéxp) as,

Starting from an input mesh (iR%), the family of meshes that share B m 1

the same mesh connectivity is simply represented by their varying S(u) = xo + ue+ = (u' A wn;: 2

vertex positions, i.e., a point = (vi;:::;Vy) 2 RP, whereD is =1 2 -1

3 times the numben of deformable vertices;. Then any vector

d 2 RP is a deformation ®eld on the mesh producing the new mesh
(x+ d). A useful distance measure between any two mesties

is de®ned ad(x1; X2) = kx1! Xk, i.e., as the Euclidean distance
of the correspogding points RP, which can be interpreted iR®
viad?(x;%2) = (Vi ! Viz)?

The parameterization of our surface exhibits quadratic forms with
symmetric(D! m) (D! m) matricesA;; j = 1;:::; mfor each

of them coordinates in the normal space. Unlike (smooth) surface
points inR3 with unique surface normals, any pokgton manifold

M has a normal space of dimensior(see Figure 5).

. L In order forS(m) to be an osculant tM, it should have second
LetEj(x) = 0 denote thé-th constraintimposed on a meshwhere order contacst(azo with eachof the hypersurface§ : E(x) = O.

JEi(X)j shall be a practically meaningful deviation measure. We Tha'second order Taylor expansionmfat xo is
assume to have constraints, which will mostly be non-linear. It is

possible to use any constraint functiBr(x) with our formulation E(x) = E(xo)+ NET (x! xo)+ }(x! xo)T Hi (X! Xo)
as long as gradients and Hessians are well de®ned. The correspond- 2

ing shape spadd is then formed by those meshes (or pointRf) +o(kx! xok?);

which satisfy all constraints, and thus it is tiiersectionof them . I
hypersurface& = fx 2 RP j Ei(x) = Og; i = 1;::::m. HenceM whereH; denotes the Hessian & evaluated ako. Substituting

is in general of dimensio® ! m and codimensiom (e.g., 600-  S(1) into the above form, we have

1000 dimensions and 300-500 codimensions in our examples on X T T
PQ meshes). Ei(u) = E(xo)+ > (NE' nj)(u’ A m)
j=1
We illustrate our framewor_k on the spec_i®c example of p_Ianar quad ¢ my m
meshe_s, where the non-.llnear constraints are the (d(_awatlon from) " 1 e H; €4)Uplig + o(kuk?); (3)
planarity measure associated with each face (in Section 5, we also 2 P

investigate circular mesh manifolds). Speci®cally, in this work, we =1 a1

use the signed distance between the face diagonals as the planaritwhere we used the orthogonality of gradient vecdE' and tan-

measurek;(x) for any quad facef;. The de®nition directly corre-  gent basis vectors;. For the surface approxima®(u) to have

lates to approximation margins typically allowed by various fabri- second order contact with(x) = 0, each second order temmu,

cation technologies. For example, for glass panels of dimensionsshould vanish, i.e.,

2m 2m, a diagonal deviation margin up to 1020mm is consid- X

ered allowable. In practice, such near-planar panels are obtained by (NET nj)AP+ el H, e =0 8p;q= 1,:;D! m (4)
. . i ] j p I 1 ] ’ 3

cold bending of the panels, and do not require custom molds. =1
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Figure 5: At any pointxo of a PQ mesh manifolt¥ the normal
space is spanned by the face planarity gradient vectors. For any
tangent line @, the localosculantS to the manifoldM de®nes a
unique vecton(t), shown in green, in the normal space which is the
axis of an osculating parabolp(u). Moving alongp(u) amounts

to vertices tracing curved paths (parabolae), resulting in better pla-
narity preservation (compare with Figure 4).

whereA™ is the matrix element of; at thep-th row and theg-th
column. Considering constraing of all mfaces, we arrive at the
following linear system foAP for j = 1;:::;m

- - - . 2 3
l)IEInl NE]TI'IZ l)lEInm Ag'q e; H]_eq
§NE2Tn1 NE] n, NEzTnmz §A2'q§ §epH2eqz
=1 . :
NETn; NETn, AR ep Hmey

®)
Note that the left matrix is independent pfandq, and hence can
be reused acrogs g. By solving the above linear system, we can
compute the matrix element of theth row andg-th column for
eachA|, and thus obtain the osculaBn).

Approximate constrained meshes. Typically, a constrained

mesh is obtained via an optimization approach, e.g., a PQ mesh carCurvatures and generalized Dupin indicatrix.

be created using the algorithm proposed by Liu et al. [2006]. Such

~
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Figure 6: In practice, instead of exploring the exact PQ mesh mani-
fold (blue curve), we work with the intersection (dotted green curve)
of hypersurfaces which are level sets to very small vadue$the
face planarity measures; EAlternately, ope can use tkelevel set
(pipe-surface) of a combined ener%: EZ2. However, at any
point (A) on such a level set, there can be an! (rh)-dimensional
space of undesirable directions (e.g., red vector) along which little
is gained in terms of navigating the (approx.) PQ mesh manifold.

better all_&proximant than can be obtained using a second order anal-
ysis of Bt Our osculant is in at leastecond order contaatith the
corresponding level s@of B\ and it captures only those directions
that lead to signi®cant progress when walking®n

Osculating parabolae. Any straight lineut through the origin of

the parameter domain is mapped via our parameterization (Equa-
tion 2) of the osculant to amsculating parabolap(u), i.e., a
parabola with vertex aty sharing a second order contact with

atxp. The surface&S(m) is formed by all such osculating parabolae.
This is a generalization of the familiar osculating paraboloid of a
hypersurface. However, in the latter case all osculating parabolae
have the same axis (the unique surface normal), while in our case
the axis directions are varying. Each tangent directidatermines

the normal which is suitable as the axis of an osculating parabola
(see Figure 5). The plane of the osculating parabola contains a man-
ifold normal and hence it has second order contact wigk@desic

in M passing througtxo with tangentt. Also note that moving
along an osculating parabgtgu), we obtain a (constrained) mesh
deformation where all vertices move along parabolae (described by
those 3 coordinates @fwhich represent the corresponding vertex).

The study of
curvatures for manifolds with high codimensian in our case) is

a mesh, however, is only approximate as the face constraints areconsidered to be complicated and cumbersome (see [Schouten and
satis®ed within a tolerance margin. Thus, the corresponding pointStruik 1931] pp. 92 onwards), and we are unaware of any previ-

Xo is not exactly on the constrained mesh manifvld but close

to it. The osculant surface then is an osculant to a slightly shifted
version of the manifold/ in controlled distance tM. This is not

an offset in the usual sense. Consider a chvin 3-space de®ned
as intersection of two surfaces, e.g4(x) = 0; Ex(x) = 0. In

our approach, we would work on a nearly parallel curve, de®ned
as intersection of two surfacds(x) = g (for very smallg). In
contrast, an offset would be a pipe surface aroMn(see Figure 6).

Alternate formulation. A much simpler mathematical formu-
lation of constrained meshes would be to combingoall the con-
straint scores into a single deviation meast#e) :=  E?(X)
(see [Liu et al. 2006] for PQ meshes). The corresponding level
setsE(x) = e for smalle are pipes forming boundaries of tubu-

ous work that effectively maps to a computational framework. In

indicatrix

tangent
boundary

‘e

O EE—— . 10mm

lar neighborhoods (see Figure 6). This approach has a numberFigure 7: Generalized Dupin indicatrix (in brown) in a 2D sub-
of disadvantages: (i) it is hard to guarantee maximum tolerances SPace spanned by third and fourth eigen-directions of the intrinsic

for each of the constraints; (ii) for such a meas#kénhe gradient

Hessian on combined fairness and orthogonality energies. The

Nﬁ(x) Vanishes for meshes on the exact Constrained mesh mani.lomm'tangent boundal’y (|n blaCk) haS Similar behaViOr as the in'

fold; (iii) walking on any level set oFx) has the disadvantage that
thereisarim! 1)-dimensional subspace of directions along which

dicatrix since the PQ mesh manifold is less curved along the longer
indicatrix direction. Hence, although meshes A and B are equidis-

we make insigni®cant progress. Note that our osculant surface is d@nt from the origin, mesh A has better planarity behavior.
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Figure 12: At a meshA, if the intrinsic Hessian {4 of the after exploration (8)

prescribed energy function (here, third order fairness combined
with orthogonality to the reference mesh) is positive de®nite, we
use a Newton relaxation, restricted to the PQ osculant surface,
to improve the mesh quality without compromising the planarity
(maxjE;jj < 10mm for all the above meshes). MesBeand C are
obtained by minimizing in a 2D tangent subspace (top-left) and in
the full tangent space, respectively.

regionsR, e.g., the green box as shown in Figure 13. Given a set
of user prescribed vertex displacements, we deform the input shape
by taking small steps in the mesh manifold. In each step, starting
from the current meskx, we compute the next mesh positiah
towards the target deformations using Equation 16. If the mesh
x0 does not intersect the obstacle, ix°\ R = 0, we continue

with further steps. Otherwise, we identify the intersecting vertex
setf V)W 2 x°\ Rg, add the corresponding vertex inequality con-
straints of the forny, 2 R to Equation 16, and solve the resultant
quadratic program [Coleman and Li 1996] to get a néwlf the
current solutiorx® still intersects the obstacle, we detect and add
additional constraints, and iterate; otherwise, we remove all the in-
equality constraints, and proceed with further steps. Since we try to
walk around the obstacles, we may fail to ®nd a solution in compli-
cated con®guration spaces. Note that adding inequality constraints

PQ mesh manifold
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osculant zoom A

0 10°

deformed model (A)

zoom B
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