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Fig. 1. We create EyelashNet, the first eyelash matting dataset (a). This allows training a deep matting network that can automatically estimate high-quality
eyelash alpha mattes (c) from an input portrait (b), where the alpha matte of the left/right eye is shown in the green/red box. In a high-fidelity avatar
reconstruction pipeline, the eyelash alpha matting enables us to remove the interference of eyelashes during the multi-view stereo (MVS) based 3D face
reconstruction process, and therefore largely enhances the efficacy and efficiency of the reconstruction of eye regions. Without eyelash removal, the
reconstructed eyelash geometry (e) often induces noises and artifacts when fitting the eyelid during 3D parametric face reconstruction (f), which requires very
expensive manual repair in hours. In contrast, eyelash matting helps to easily achieve a better geometry of the eye region (g). As a result, more faithful eyelids
with much higher quality can be reconstructed. We show the fully rigged avatar in (i) for completeness. In addition, our eyelash alpha matting method can be
applied for cosmetic design such as eyelash recoloring (d, top) and eyelash editing (e.g, lengthening the eyelashes) (d, bottom).
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Eyelashes play a crucial part in the human facial structure and largely
affect the facial attractiveness in modern cosmetic design. However, the
appearance and structure of eyelashes can easily induce severe artifacts in
high-fidelity multi-view 3D face reconstruction. Unfortunately it is highly
challenging to remove eyelashes from portrait images using both traditional
and learning-based matting methods due to the delicate nature of eyelashes
and the lack of eyelash matting dataset. To this end, we present EyelashNet,
the first eyelash matting dataset which contains 5,400 high-quality eyelash
matting data captured from real world and 5,272 virtual eyelash matting
data created by rendering avatars. Our work consists of a capture stage
and an inference stage to automatically capture and annotate eyelashes
instead of tedious manual efforts. The capture is based on a specifically-
designed fluorescent labeling system. By coloring the eyelashes with a safe
and invisible fluorescent substance, our system takes paired photos with
colored and normal eyelashes by turning the equipped ultraviolet (UVA)
flash on and off. We further correct the alignment between each pair of
photos and use a novel alpha matte inference network to extract the eyelash
alpha matte. As there is no prior eyelash dataset, we propose a progressive
training strategy that progressively fuses captured eyelash data with virtual
eyelash data to learn the latent semantics of real eyelashes. As a result,
our method can accurately extract eyelash alpha mattes from fuzzy and
self-shadow regions such as pupils, which is almost impossible by manual
annotations. To validate the advantage of EyelashNet, we present a baseline
method based on deep learning that achieves state-of-the-art eyelash matting
performance with RGB portrait images as input. We also demonstrate that
our work can largely benefit important real applications including high-
fidelity personalized avatar and cosmetic design.

CCS Concepts: • Computing methodologies → Computer graphics.
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1 INTRODUCTION
High-quality personalized digital humans are crucial to a wide range
of applications, including virtual reality, movies, games, etc. To cre-
ate a high fidelity human face, a common workflow in the modern
CG industry for virtual human creation includes two steps: 1) re-
constructing a 3D parametric face model from the raw scan; and
2) generating face rigs for the parametric model. While the latter
step has attracted huge interest from the research community and
high-quality face rigs now can be produced automatically [Garrido
et al. 2016; Li et al. 2010, 2020; Ma et al. 2016; Song et al. 2020], the
former step still suffers from tedious labor works, especially in the
scenario of very high accuracy face reconstruction (e.g. the face
geometry contains about 7 million vertices and 15 million faces).
One key challenge comes from the eyelashes. As shown in Fig. 1
(e) and (f), with the existence of eyelashes, noticeable artifacts will
occur on the eyelids on the parametric face model. As a result, an
artist typically needs to take around 5 hours to repair these eyelids,
which is extremely labor-intensive.

In this paper, we seek to eliminate the negative effects of eyelashes
on high-accuracy parametric face reconstruction, by removing the
eyelashes from images before reconstruction and adding them back

as a post-processing step after reconstruction. However, eyelash
removal is a very challenging task. Manually removing eyelashes
is often labor-intensive and time-consuming, as eyelashes are very
tiny and complex. It is very difficult to separate eyelashes from fuzzy
and self-shadow backgrounds (e.g. pupils) with similar colors via
manual labeling. Previous methods [Beeler et al. 2012; Bermano
et al. 2015; Nam et al. 2019] utilize Gabor filters to remove eyelashes,
but these methods cannot deal with images with various eye expres-
sions, illuminations and shadows (e.g. eyelashes are covered by the
shadow of other objects or, fall in the shadow area). A feasible solu-
tion is to perform image matting. However, current image matting
methods [Aksoy et al. 2018; Li and Lu 2020; Lin et al. 2020; Qiao
et al. 2020] may yield poor matting results due to the lack of eyelash
matting dataset.
To solve the above problems, we introduce EyelashNet, the first

high-quality eyelash matting dataset built from authentic captured
photos, which enables automatic and accurate eyelash matting on
internet images with different eye expressions, illuminations, and
shadows, using a baseline network. Establishing such a dataset re-
quires addressing the following challenges. First, existing methods
for building matting datasets [Rhemann et al. 2009; Smith and Blinn
1996] extract detailed foreground objects with the help of bluescreen-
ing. However, as eyelashes are covering the eyeballs and eyelids, it
is impossible to use bluescreening for eyelashes. Second, bluescreen-
ing based methods can compute the alpha matte by triangulation
[Rhemann et al. 2009] using the photos of the foreground object on
four single-colored backgrounds (i.e. black, red, green, and blue),
but in the eyelash case, we are not capable of obtaining the alpha
values in this way.

To tackle the first challenge, we propose a novel eyelash capture
system to accurately extract the eyelashes from the image. The key
insight of our capture system is, instead of marking the background
with a pure color like the blue screen, we can conversely mark the
foreground object, which is more feasible for eyelashes. To this end,
we design a novel eyelash capture system which marks the subject’s
eyelashes using a harmless fluorescent substance [MOVA 2021]. The
fluorescent substance is invisible normally (Fig. 3 (a)) and is only
visible when exposed to a UVA flash (Fig. 3 (b)). By taking two pho-
tos under the same pose using the double shooting mode with the
UVA flash on and off, we get a normal eyelash image and a colored
eyelash image. After further image alignment with image warping,
an accurate eyelash mask (Fig. 3 (f)) can be extracted by subtracting
the two images (Fig. 3 (a, b)). To tackle the challenge of alpha matte
computation, we introduce an alpha matte inference network that
takes the extracted eyelash mask and corresponding image (Fig. 3 (f,
a)) as input to infer the alpha values. However, training the neural
network is also difficult, because there is no real training data with
ground truth. Even with the help of a synthetic eyelash dataset,
the performance is still limited by the covariate shift [Ioffe and
Szegedy 2015] between the synthetic eyelash dataset and captured
dataset. We propose a progressive training strategy to overcome
this difficulty by reducing the covariate shift between the synthetic
eyelash dataset and captured dataset. We first warm up the infer-
ence network with a synthetic eyelash dataset with ground truth
by rendering avatars. After warming up, we carefully check and
select the perceptually correct alpha matte results using perceptual
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selection (a weak labeling process). Then we add the selected data
to the synthetic dataset to train the alpha matte inference network.
We perform the selecting and training process iteratively. Such a
simple strategy can quickly adapt the inference network to real
eyelash data after 2 rounds of training. The trained network is able
to compute high-quality alpha mattes from the extracted eyelash
masks and corresponding images.
Based on the proposed capture system and alpha matte infer-

ence network, we obtain the EyelashNet dataset composed of 5,400
high-quality eyelash matting data, captured from 50 subjects with
a variety of ages (18-30), genders, head poses (with yaw angles of
-60°, -30°, 0°, 30°, and 60°, and pitch angles of -45°, 0°, and 45°), facial
expressions and eye expressions (e.g., open eyes, close eyes, etc.).
With such a captured eyelash matting dataset, we train a baseline
network which can generate accurate eyelash matting from a single
portrait photo. The network architecture is adopted from [Li and Lu
2020], which is a CNN-based encoder-decoder network with multi-
ple guided contextual attention modules. Such a network enables
automatic and accurate eyelash removal for high-quality parametric
face model reconstruction, and generalizes well on in-the-wild im-
ages. To summarize, this paper makes the following contributions:

• To the best of our knowledge, we propose the first high-
quality eyelash matting dataset built from authentic captured
photos, which enables automatic and accurate eyelash mat-
ting on portrait images with different eye expressions, illumi-
nations, and shadows. The EyelashNet dataset will be made
publicly available.

• We design a novel eyelash capture system using a fluorescent
substance, which can automatically extract accurate eyelashes
from the captured portrait images. Our progressive training
strategy can effectively infer the alpha mattes based on the
extracted eyelashes.

• We validate the performance of EyelashNet dataset with a
baseline network, and compare our results with state-of-the-
art methods. Our results outperform others in both qualitative
and quantitative comparison.

2 RELATED WORK
Matting dataset is the key component for deep-learning based
image matting. Many datasets have been released to the community.
Rhemann et al. [2009] present the first image matting benchmark,
which intrigues further data-driven based matting methods. Xu et
al. [2017] create the composition-1k dataset, a large-scale matting
dataset based on image composition. Chen et al. [2018] create a
human matting dataset containing 35,513 images and their corre-
sponding alpha mattes, but the dataset is not publically available.
Qiao et al. [2020] release the Dinstinctions-646, a matting dataset
composed of 646 foreground images with manually annotated alpha
mattes for encouraging future research on trimap-free image mat-
ting. These datasets focus on the overall structure of objects instead
of local and detailed components such as eyelashes. Lee et al. [2020]
create a face image dataset containing segmentation masks of facial
attributes, but eyelash data is not supported. In summary, eyelashes
have not been addressed by prior works and there is no eyelash
dataset available so far. On the other hand, creating a high-quality

eyelash matting dataset is rather challenging. Unlike existing meth-
ods [Rhemann et al. 2009; Smith and Blinn 1996; Xu et al. 2017] that
can edit the background variations of static objects to obtain fore-
ground alpha mattes with fine details, the human eyes are dynamic
and the background of eyelashes such as eyelids and eyeballs cannot
be easily edited, replaced, or removed. Moreover, it is tedious and
time-consuming to manually annotate detailed eyelashes compared
with other objects such as humans [Chen et al. 2018]. Although
using virtual eyelashes is a feasible solution to create high-quality
matting data containing fine details, virtual results require costly
modelling and rendering expertise to appear realistic, while the
quality gap still remains when comparing with real eyelashes. To
this end, we develop a novel fluorescent labeling system to automat-
ically capture accurate eyelash matting data without any human
annotation. Based on it, we present EyelashNet, an eyelash matting
dataset to effectively estimate the matte of eyelashes.

Image matting is a fundamental problem that has been actively
studied in image processing. Affinity-based methods [Aksoy et al.
2017] that rely on pixel similarity metrics are proposed for image
matting. Sampling-based methods [Feng et al. 2016] have been in-
vestigated as well. Sun et al. [2006] extract mattes using a pair of
flash/no-flash images in a sufficiently distant background scene.
However, the performance of these methods is not good enough
for matting delicate objects such as eyelashes. Recent deep learning
methods have achieved promising results on natural image mat-
ting [Cai et al. 2019; Forte and Pitié 2020; Li and Lu 2020; Lu et al.
2019] and human matting [Chen et al. 2018; Liu et al. 2020; Qiao
et al. 2020]. Trimap based methods take an image and a trimap
(foreground, background, and unknown regions are marked) as a
prior to estimate the detailed alpha matte [Aksoy et al. 2017; Xu
et al. 2017]. Li et al. [2020] present a guided content attention net-
work to weaken the requirements of trimap, and achieve better
results compared with the affinity-based method [Aksoy et al. 2017].
However, labelling accurate trimap of eyelashes requires tedious
user interaction, which is not feasible in practice. Recently, fully
automatic matting methods [Qiao et al. 2020; Zhang et al. 2019]
are proposed to overcome the limitation of trimap inputs. Zhang
et al. [2019] present a fusion CNN for automatic matting. Liu et
al. [2020] present a coarse-to-fine framework for semantic human
matting that overcomes the lack of detailed matting dataset by using
the combination of large-scale data with coarse annotations and
small-scale matting data with fine details. Qiao et al. [2020] recon-
cile advanced semantic information with low-level appearance cues
to refine the foreground details. However, these methods cannot
deal with mixed eyelashes and pupils. Background matting methods
[Lin et al. 2020; Sengupta et al. 2020] have achieved outstanding
performance to process high-resolution videos firmly in real time.
However, their methods require a background image as input, which
is hard to obtain for eyelash matting.

High-quality eye reconstruction plays an important role in
face reconstruction. It has wide applications in the film and enter-
tainment industry, and is highly anticipated by the academic and
business sectors. Existing works have focused on various aspects
of eyes, including eye shape/motion reconstruction and parame-
terization [Bermano et al. 2015; Li et al. 2017; Trutoiu et al. 2011;
Wen et al. 2017b,a], eyelid wrinkle reconstruction [Cao et al. 2015],
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Fig. 2. An overview of our system, which consists of a capture stage (top) and an inference stage (bottom). (a) In the capture stage, we first color the subject’s
eyelashes with an invisible fluorescent substance, and precisely control the head position. Each camera focuses on the left and the right eye of the subject, and
takes two photos with colored and normal eyelashes using continuous shooting mode with a UVA flash on and off. (b) Then we correct the alignment of these
two captured photos based on a warp field estimated from a learnt FlowNet2 model, and perform subtraction to get an eyelash mask that can be used as a
prior input of our baseline network to generate the refined eyelash alpha matte. (c) To complement real captured data, we also construct RenderEyelashNet,
an eyelash matting video dataset created by rendering virtual avatars. In the inference stage, we employ a progressive training strategy that leverages the
advantages of synthetic and captured data to achieve enhanced eyelash matting performance.

photo-realistic gaze and eye contact reconstruction [Kim et al. 2019;
Nair et al. 2020; Schwartz et al. 2020;Wang et al. 2016;Whitmire et al.
2016; Wood et al. 2016], eye editing for portrait images [Shu et al.
2017], and retinal imaging [Huang et al. 2014; Swedish et al. 2015].
However, few works pay attention to eyelashes. Menon et al. [2020]
recover eyelashes from images with very low resolution. GAN-based
methods [Choi et al. 2020; Liu et al. 2016] enable eye style trans-
fer, but cannot support high-quality eyelash manipulations. Beeler
et al. [2012] and Nam et al. [2019] utilize Gabor filters to extract
eyelashes for hair reconstruction. Nevertheless, the performance is
limited when dealing with varying head poses, illuminations, and
eye expressions. This refers to the fundamental problem of eyelash
matting, which is mainly due to the lack of feasible eyelash matting
solutions and the related eyelash matting dataset. Our work aims to
fill this gap. We first present a novel fluorescent labeling system to
automatically capture high-quality eyelash matting data. We also
propose a deep-learning based method for effective eyelash matting.

3 OVERVIEW
In this work, we propose EyelashNet, the first eyelash matting
dataset, produced with a novel fluorescent-based capture system

for eyelash extraction and a novel alpha matte inference network
for alpha matte computation. Thanks to the EyelashNet dataset, we
can train a baseline network to achieve accurate eyelash matting
on internet images. Fig. 2 gives an overview of our system, which
is composed of a capture stage and an inference stage. During the
capture stage (Section 4), we first brush the subject’s eyelashes with
an invisible fluorescent substance. While the subject sits still, the
cameras focus on her/his left and right eye respectively to capture
the raw data. For each eye, our system takes two photos of eyelashes
using the continuous shooting mode with the UVA flash on and off.
The fluorescent substance is activated and appears purple when the
UVA flash is on, otherwise it is invisible. Given the two captured
photos with the normal eyelashes and purple eyelashes, the accurate
eyelash mask can be naturally obtained by image subtraction. How-
ever, as the eyelashes are very tiny and the subject is not able to sit
perfectly still, direct subtraction on the two continuously captured
photos will produce unneglectable errors (as shown in Fig. 3 (e)).
Hence we align the two photos with an estimated optical flow first
and then perform subtraction on the aligned photo pairs.

During the inference stage (Section 4.3), the alpha matte inference
network takes as input the extracted eyelash mask as well as the
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(a) Original (b) Colored image without alignment correction (c) Colored image with alignment correction

(d) Trimap (e) Eyelash mask of (b) and (a) (f) Eyelash mask of (c) and (a)

Fig. 3. Exemplars of the captured data, alignment correction, and the corresponding trimap. We present the original image (a), the colored image without
(b) and with (c) alignment correction, a trimap example (d), and the differences between the colored and original images without (e) and with alignment
correction (f), respectively.

corresponding eyelash image, and infers the alpha matte values for
the eyelash. As there is no real training data with ground truth to
supervise the network training, we introduce a progressive train-
ing strategy. The inference network is firstly warmed up (noted as
warm-up network) with RenderEyelashNet (Section 6.2), a rendered
eyelash dataset. Afterwards, we carefully check the alpha matte
results on the captured eyelash images, and pick the perceptually
correct results and add them to the training data to run the next
round of training on the alpha matte inference network. The infer-
ence network can be quickly adapted to real eyelash data after 2
rounds of training, and yields high-quality alpha mattes from the
eyelash masks and corresponding images.

Based on the proposed capture system and alpha matte inference
network, we create an eyelash matting dataset named EyelashNet
(Section 6). With EyelashNet as training data, we are able to train a
baseline network for fully automatic eyelash matting from a single
image. We demonstrate the qualitative and quantitative evaluations
of the proposed eyelash matting dataset in Section 7.

4 EYELASH MATTING DATA GENERATION
In this section, we first present the system design principles for
generating the eyelash matting data, and analyze the practical chal-
lenges. Then we elaborate on the capturing system in detail. Finally,
we present the structure of our eyelash alpha matte inference net-
work, and how we apply a progressive training strategy to enhance
the matting performance.

4.1 Design Principles
Mathematically, the natural image 𝑰 is defined as a convex combina-
tion of foreground image 𝑭 and background image 𝑩 at each pixel
𝑗 as:

𝑰 𝑗 = 𝛼 𝑗 · 𝑭 𝑗 + (1 − 𝛼 𝑗 ) · 𝑩 𝑗 , 𝛼 𝑗 ∈ [0, 1], (1)

where 𝛼 𝑗 is the alpha value at pixel 𝑗 that denotes the opacity of
the foreground object. If 𝛼 𝑗 is not 0 or 1, then the image at pixel 𝑗 is
mixed. Alpha matting is an ill-defined problem since the foreground
color 𝑭 𝑗 , background color 𝑩 𝑗 , and the alpha value 𝛼 𝑗 are unknown.

Prior work [Rhemann et al. 2009; Smith and Blinn 1996] obtains
the alpha matte of a still object by laying it over at least three
solid color backgrounds. However, these methods are infeasible for
eyelashes as eyelashes are covering the eyelids and eyeballs. To this
end, we propose to use two strictly aligned eyelash photos with
different colored eyelashes to extract the alpha matte of eyelashes.
Let 𝑰𝑐 be the colored eyelash image, and 𝑰 be the normal eyelash
image that is strictly aligned with 𝑰𝑐 in head pose and illumination.
According to Equation 1, the alpha value at each pixel 𝑗 can be
formulated as:

𝑰𝑐
𝑗,𝑘

− 𝑰 𝑗,𝑘 = 𝛼 𝑗 · (𝑭𝑐𝑗,𝑘 − 𝑭 𝑗,𝑘 ), (2)

where 𝑰𝑐
𝑗,𝑘
, 𝑰 𝑗,𝑘 , 𝑭

𝑐
𝑗,𝑘
, 𝑭 𝑗,𝑘 are the value of pixel 𝑗 at channel 𝑘 ∈

{𝑅,𝐺, 𝐵} in the colored image 𝑰𝑐 , the normal image 𝑰 , the colored
foreground 𝑭𝑐 and the normal foreground 𝑭 , respectively. 𝑭𝑐 , 𝑭
are usually unknown and related to complicated shading equation.
Therefore solving 𝛼 𝑗 is a complex nonlinear problem. As we cannot
use the triangulation method [Smith and Blinn 1996] with multi-
ple single-color backgrounds to compute the alpha values, in this
work we conduct a matting network to perform the alpha matte
estimation.

The above design allows us to extract eyelash alpha mattes from
the captured image pair 𝑰𝑐

𝑗,𝑘
, 𝑰 𝑗,𝑘 . However, it is rather challenging

to obtain such an image pair, since the eyelashes and the correspond-
ing backgrounds (skins, eyeballs, etc.) are dynamic over time and
challenging to keep strictly still. This requires us to add a single
color on eyelashes and take two photos with and without that color
in a short period of time (0.2 second or less), such that the normal
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(a) Acquisition device

(b) Precise positioning of the head (c) Frontal view

(d) Up view (e) Back view

Fig. 4. Our acquisition system contains 15 cameras and 3 UVA flashes (a). To control the head position precisely, we utilize a cross laser to guide a subject’s
head in the camera focus regions and a medical neck immobilizer to restrict head poses (b). In the second row (from left to right), we show the frontal view (c),
up view (d), and back view (e) of the device layout, respectively. Cameras are illustrated with blue icons, and UVA flashes are illustrated with purple rings.

and colored eyelash images are well aligned. However, it is not pos-
sible to complete the whole process in such a short time under a
normal camera and (environment) lighting setup.
Inspired by the fluorescence response where a fluorescent sub-

stance can present different colors under different lighting condi-
tions (such as visible light, UVA light, etc.), we design a fluorescent
labeling system that can capture two different visual states of eye-
lashes in a very short time. Since the normal eyelash images are
required in our method, we use an invisible fluorescent substance,
a type of pigment that can only be highlighted under the UVA light
and is invisible under the visible light. We further design a capture
device consisting of a camera and a specifically configured UVA
flash, allowing the continuous shooting of two photos. Specifically,
the UVA flash is turned on and off immediately to capture two con-
tinuous images with and without colored eyelashes. Fig. 3 shows
an example of captured eyelash images.

4.2 The Capturing System
The capturing system is designed to extract eyelash masks by cap-
turing a pair of images with normal and colored eyelashes. To gen-
erate high-quality eyelash masks, two captured photos should be
strictly aligned with each other to eliminate the effect of the pose,
expression, and illumination variations, etc. Besides, how to ap-
ply the invisible fluorescent substance and the UVA light device
should be carefully taken into consideration. The eyelashes should
be accurately and evenly colored with special care. We design a
multi-camera data capturing system as shown in Fig. 2 (a) to achieve
the above goals. For a subject, we first brush her/his eyelashes using
an invisible fluorescent substance. Then we locate the head of the
subject at the focus area of the cameras. Then we take the colored
images 𝑰𝑐 and the original images 𝑰 of the subject with the UVA

light on and off from different views. During the capturing process,
the head is kept still.

Eyelash coloring. The subject’s left and right eyelashes are col-
ored with an invisible fluorescent substance, resulting in a colored
appearance under the UVA light and a normal appearance under
the visible light. Other physical properties such as viscosity, gloss,
hardness, etc. are almost preserved. The visibility of the fluores-
cent substance under UVA light should be appropriate, neither too
strong that leads to halo effects, nor too weak that cannot be ob-
served. Besides, the fluorescent substance should be harmless to the
eyes, skins, eyelashes, etc. According to the official instructions and
the Safety Data Sheet1 of Noris 110UV ink [Noris 2021] and after
several attempts (on mannequins first, and then human subjects),
it turns out that Noris 110UV ink is a good substance to meet our
requirements. A low-power 365nm UVA light is suitable to capture
the eyelashes accordingly. For hygiene reasons, we use disposable
eyelash brushes to color the eyelashes of each subject. During the
capturing process, in the rare case where the substance accidentally
enters the eyes, we use normal saline to quickly wash the eyes. We
cancel the capture process if the subject feels uncomfortable when
touching the eyelashes.

Acquisition device. Our multi-view capturing system contains
15 cameras, 3 UVA flashes, and 3 photographic lamps. Fig. 4 (a)
shows the setup of the capturing system. Specifically, each of the
UVA flash is placed about 0.5m away from the subject’s eyes, and
consists of 48 ultraviolet LED lamps with the power of 0.06 Watt,
which is much lower than the standard of International Electrotech-
nical Commission [Commission [n.d.]], so it is harmless to the
subject. We provide additional analysis for the UVA flashes in the

1http://www.norisusa.com/110UV_Blue_MSDS_Noris_Ink.pdf
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supplementary materials to further alleviate potential security con-
cerns. To prevent the visible light emitted by UVA flashes which may
change the environment illumination, we utilize 365nm ultraviolet
transmittance filter to suppress visible light as much as possible. We
set the cameras to focus on a specified region and then fix their focal
lengths, and use wireless shutters to ensure efficient capture of the
eyelash data. The cameras are set on the continuous shooting mode
to take two photos in about 1/7 second (twice of the continuous
shooting speed of Canon 80D cameras). An additional camera is set
on the single-shot mode to turn the UVA flash on in the first shot,
and off in the second shot during the capture process. Since moving
cameras will reduce the capturing efficiency dramatically, we place
the cameras in fixed positions.
Capture environment. The 16 cameras are synchronized based

on the wireless shutter, among which 15 cameras are used to capture
data under fast burst shooting, and the remaining camera is used to
trigger the UVA flashes. To control the illumination, we cover the
acquisition device with a blackout cloth to create a darkroom-like
environment and control the light with 3 photographic lamps. We
add filters to the UVA flashes to reduce the intensity of visible light
to minimize the color differences between the two photos and the
stimulated response of the eyes to the flashes.
Precise positioning of the head. For those cameras on the side,

it is impossible to acquire clear photos of both eyes because they do
not appear on the same focus plane. Hence we capture the left eye
and the right eye separately. We precisely control the subject’s head
located in the camera focus regions. We use an adjustable chair to
control the upper and lower body, and a cervical vertebra tractor to
control the head orientation of the subject. We put adjustable boards
behind the subject’s head to control the front and rear positions.
Finally, we slightly adjust the subject’s body position to align the
pupil of the subject’s right/left eye with the center of the medical
positioning laser (as shown in Fig. 4 (b)). We require the subject to
remain as still as she/he can during one continuous shooting. Even
so, the involuntary movement of the subject still affects the result.
We use a medical neck immobilizer to further restrict head poses.

After the head is carefully positioned, we take the colored images
𝑰𝑐 and the normal images 𝑰 of the subject with the UVA light on and
off. The difference between the colored image and normal image is
obtained as follows:

𝐷 (𝑰𝑐 , 𝑰 ) = max(𝑰𝑐 − 𝑰 , 0), (3)

where max(·, ·) is the pixel-wise maximum operation. Fig. 3 (a, b, e)
shows an example of the colored images, the original images, and
the differences noted as eyelash mask between them, respectively.
In total, we capture 12 facial and eye expressions of the subject
from 15 views. On average, the whole capturing process takes about
15 minutes to apply the invisible substance, 5 minutes for head
positioning, 10 minutes for capturing data, and 5 minutes to remove
the fluorescent substance.
Alignment correction. Although our system is carefully de-

signed to allow accurate eyelash mask estimation, in practice it is
extremely difficult to avoid subtle pose and expression changes of
the subject during the capturing process. This often causes mis-
alignment between paired eyelash images and results in erroneous
eyelash masks. To resolve this, we employ image warping [Shih

Fig. 5. An exemplar of the optical flow alignment’s failure case.

et al. 2019] to correct the misalignment between paired images. The
image warping is guided by the optical flow between the normal
and colored eyelash image pairs estimated by FlowNet2 [Ilg et al.
2017]. Specially, we fine-tune the FlowNet2 model on an optical flow
dataset created from RenderEyelashNet (Section 6.2). The optical
flow dataset consists of continuously rendered normal and colored
image sequences with affine transformations being applied between
each pair of image frames [Dosovitskiy et al. 2015]. We treat the
data as a failure case with noticeable noise in the eyelash masks
before and after alignment correction (as shown in Fig. 5).

4.3 Alpha Matte Inference Network
Inspired by [Li and Lu 2020], we construct an inference network
to estimate the alpha matte from the extracted eyelash mask and
the corresponding eyelash image. To make the paper more self-
contained, we first demonstrate the network structure of [Li and
Lu 2020]. Then we describe the details of our inference network.
Finally, we present the progressive training strategy that iteratively
adapts the network to the real eyelash data.
The network of [Li and Lu 2020] is a U-net like structure [Ron-

neberger et al. 2015] , i.e., an encoder-decoder network containing
stacked residual blocks [He et al. 2016]. The encoder contains 3 conv
layers and 4 residual blocks, and the decoder consists of 4 residual
blocks, 1 deconv layer and 1 conv layer. Five shortcut layers are used
to build the skip connections, which provide lower-level features to
the estimated alpha matte. Two guided contextual attention (GCA)
modules extract the similarity information from the low-level image
features to refine the alpha features. The input to their network is
an RGB image and a trimap. In their implementation, a trimap is an
8-bit image which defines three regions: a definite foreground (with
value 255), a definite background (with value 0), and an unknown
region (with value 127). In the alpha matte inference network (Sec-
tion 4.3), the trimap will be replaced by an eyelash mask (as shown
in Fig. 3(f)). In the baseline network (Section 5), the trimap will be
replaced by a trimap with all pixels set to 127. The output is an alpha
matte estimation of the foreground in the unknown regions. Their
network leverages one alpha prediction loss defined as the average
difference between the ground truth and the estimated alpha matte
over the unknown regions:

𝐿𝑀𝐴𝐸 =
1
|𝑼 |

∑
𝑖∈𝑼

|𝛼𝑖 − 𝛼𝑖 |, (4)

where 𝑼 represents the unknown regions indicated in the trimap,
𝛼𝑖 and 𝛼𝑖 are the estimated and ground truth values of the alpha
matte at position 𝑖 . For the image feature 𝑰𝑔𝑐𝑎 in the GCA module,
they extract 3× 3 patches from the whole image feature. For a patch
𝑷𝑥,𝑦 centered on (𝑥,𝑦), they define an attention score for the patch
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Fig. 6. Exemplars of perceptually reasonable (first row), borderline (second row), and unreasonable cases (third row), respectively.

based on the trimap as follows:

𝑤 (𝑼 ,𝑲 , 𝑥,𝑦) =


𝑐𝑙𝑎𝑚𝑝 (
√

|𝑼 |
|𝑲 | ), 𝑷𝑥,𝑦 ∈ 𝑼 ;

𝑐𝑙𝑎𝑚𝑝 (
√

|𝑲 |
|𝑼 | ), 𝑷𝑥,𝑦 ∈ 𝑲 ,

(5)

𝑐𝑙𝑎𝑚𝑝 (𝑤) = min(max(𝑤, 0.1), 10), (6)
where 𝑲 represents the known regions. 𝑐𝑙𝑎𝑚𝑝 (·) is a function that
limits the value of attention score𝑤 (𝑼 ,𝑲 , 𝑥,𝑦) within 0.1 to 10. The
attention score is used to leverage the feature similarity between
different patches. Please refer to [Li and Lu 2020] for more details
on the network structure and the GCA module.

Our alpha matte inference network shares almost the same struc-
ture and setup as [Li and Lu 2020], except that the input, the attention
score function and data augmentation (described in Section 7.1) are
specifically designed to fit the format of our captured data. The input
to the alpha matte inference network comprises an RGB image and
an eyelash mask (as shown in Fig. 3(a, f)). We use the same objective
function as in Li and Lu [2020]. The only difference is that we treat
the whole input image region as the unknown region in Eq. 4.

More specifically, as the extracted eyelash mask (Eq. 3) contains
floating values around the foreground boundaries instead of binary
values, it provides more detailed information than the trimap used
in Li and Lu [2020] to help the GCA module generate more effective
attention map for the inference network. As a result, the inference
network can estimate eyelashes in fuzzy regions (e.g., pupils) based
on the eyelash mask prior. We first downsample the eyelash mask to
the same size of the image feature 𝑰𝑔𝑐𝑎 in the GCA module. Then we
let𝐷𝐵 be the blue channel of the down-sampled eyelashmask (which
has the strongest response), and use it to compute the attention score
for the patch 𝑷𝑥,𝑦 of 𝑰𝑔𝑐𝑎 as follows:

𝑤𝑐 (𝑥,𝑦) =
1
9

∑
𝑖, 𝑗

𝐷𝐵 (𝑖, 𝑗), 𝑖 ∈ {𝑥−1, 𝑥, 𝑥+1}, 𝑗 ∈ {𝑦−1, 𝑦,𝑦+1}. (7)

4.4 Progressive Training
Based on the alpha matte inference network, we adopt a progressive
training strategy to improve the matting performance on the real
captured eyelash data. Since our work aims at detailed matting
results, high precision matting data are required for inferring the
eyelash alpha matte. For our captured data, we select image pairs
that are visually aligned well as the starting dataset of progressive
training. During training, we first warm up the alphamatte inference
network with the synthetic dataset RenderEyelashNet (Section 6.2).
After warming up, we use the network to test the real captured data.

Then, we carefully check and select the estimated alphamatte results
through perceptual selection (described in the next paragraph). We
treat the perceptually correct results as pseudo ground truth and add
them back to the training data to run the next round of training. We
denote the above merged dataset as the first round of eyelash dataset
(R1). For the second round, we train our inference network on R1 to
update the alpha mattes for all of the captured data (including the
selected captured data in R1). Similarly, we select the perceptually
correct results as pseudo ground truth and add them to R1 to run the
next round of training (denoted as R2). For each round of training,
the inference network follows the initialization and training setup
described in Section 7.1. Such a simple strategy can quickly adapt
the network to real eyelash data after 2 rounds of training. The
trained network is able to yield accurate alpha mattes with the
eyelash mask and corresponding image as input. Such a progressive
training strategy helps achieve better eyelash matting performance
(see Section 7.3 for qualitative and quantitative evaluations).

Perceptual selection. We do not come up with an automatic
method as no sufficiently large labeled dataset is available for satis-
factory classification. The compromise is a perceptual selection, a
weak labeling process following the criterion that the alpha matte
should cover almost all eyelashes but not non-eyelash areas. In
practice, five raters are invited to observe and judge whether the
matting data are qualified. We choose the data with a majority of
qualifying scores. Each matting result takes about 5 seconds for
a rater to observe and judge. We treat the eyelash matting data
with defocus blur, observable unmasked eyelashes, or observable
masked background, etc., as failure cases. Fig. 6 shows examples of
perceptually reasonable, borderline, and unreasonable cases.

5 BASELINE NETWORK
We introduce a baseline network to infer the eyelash alpha matte
using an RGB image only as input without any prior (e.g., eyelash
mask, trimap, etc.). Our baseline network follows the same network
structure and objective function (Eq. 4) as that of Li and Lu [2020]
except that we set all the pixel values of the trimap to 127. We
employ the data augmentation method described in Section 7.1 to
increase the diversity of the captured data.

6 DATASET
The availability of image matting dataset [Qiao et al. 2020; Rhemann
et al. 2009; Xu et al. 2017] has greatly enhanced the research on
matting techniques. However, due to the lack of eyelashmatting data,
the performance of the existing learned model for eyelash matting
is far from satisfactory (see Fig. 12). As such, eyelash matting data
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Fig. 7. An exemplar of captured data from 15 views. Rows 1, 3, and 5 are the
captured photos of eyelashes, and rows 2, 4, and 6 are the corresponding
alpha mattes. In each row (from left to right), we show views at head yaw
angles of -60°, -30°, 0°, 30°, and 60°, respectively. In each column (from top to
bottom), we show the vertical view (rows 1, 2), front view (rows 3, 4), and
bottom view (rows 5, 6) of eyelashes, respectively.

are largely required to not only fill in the literature gap on image
matting, but also benefit the downstream applications such as face
performance capture, personalized avatar, eyelash editing, cosmetic
design, etc.

In this section, we introduce EyelashNet, the first eyelash matting
dataset generated with our system. As EyelashNet is captured within
the lab environment with limited subjects which may not fully
reflect the in-the-wild conditions (e.g., illuminations, skins, etc), we
further augment EyelashNet with RenderEyelashNet generated by
rendering avatars. Moreover, we build a baseline test dataset (noted
as EyelashNet-Base) to evaluate the quality of EyelashNet.

6.1 EyelashNet
We collect the eyelashes of 50 Asians (25 males and 25 females)
aging from 18 to 30 under the academic usage agreement. The
capturing system’s risks are evaluated and approved by an ethics
board in advance. The participants gave informed consent before
participating. We capture (from 15 views) the left and right eyelash
images under 12 facial and eye expressions, including neutral, close
eyes, frown, raise eyebrows, look left, look right, look up, look down,
squeeze eyes, smile, simper, and anger, respectively (as shown in Fig.
8). Fig. 7 shows an example of the 15 multi-view eyelash images of
an individual. From left to right, we capture the eyelash images with
the views corresponding to -60◦, -30◦, 0◦, 30◦, 60◦ yaw angles of
head pose, respectively. From top to bottom is the vertical view, front
view, bottom view of eyelashes. We finally create EyelashNet, a high-
quality eyelash matting dataset composed of 5,400 real captured
data after progressive training. EyelashNet is split into a training
dataset (4,860 captured data) and a test dataset (540 captured data).

Fig. 8. An exemplar of captured data with 12 eye expressions. From left to
right and top to bottom, the eye expressions are neutral, close eyes, frown,
raise eyebrows, look left, look right, look up, look down, squeeze eyes, smile,
simper, and anger, respectively.

6.2 RenderEyelashNet
Despite the visual difference from real eyelash images, there are
clear advantages of synthetic eyelash images created by rendering
avatars. Firstly, it is much cheaper to obtain accurate eyelash alpha
mattes under variations of genders, head poses, races, illuminations,
etc. In contrast, since the camera positions of our capturing system
are fixed, the head poses of captured images are restricted. Also,
the variations of the captured images are limited to the recruited
subjects and the lab illumination condition. To complement the real
captured data, we construct RenderEyelashNet, an eyelash matting
video dataset created by rendering virtual avatars. The avatars are
created and rendered using DAZ 3D [Inc 2021]. We use four avatars
(one white woman, one black woman, one Asian man, and one
white man) with pose and expression variations. We continuously
change their head poses from -120◦ to 120◦ yaw angles, and -60◦ to
60◦ pitch angles. The facial and eye expressions are also changing
smoothly in the videos. With such a setup, the RenderEyelashNet
contains most common poses that may appear in common portrait
photos. Moreover, we simulate the fluorescent capture system, and
render additional fluorescent-like videos. Three weaker purple light
sources are created to simulate the light noise caused by the vis-
ible part of UVA light (UV filters can not completely remove the
visible light portion). We render part of the avatars with very small
perturbations to simulate the subtle expressions and pose noises.
We also render the background image (faces without eyelashes) of
the corresponding foreground eyelashes. Fig. 9 shows several key
frames of RenderEyelashNet. From top to bottom, we present the
simulated colored images, the original image, the background, and
the alpha mattes, respectively. Finally, we construct 5,272 alpha mat-
ting data instances with varying genders, races, poses, expressions,
etc. RenderEyelashNet is split into a training dataset (4,965 rendered
data) and a test dataset (307 rendered data).
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Fig. 9. Several key frames of eyelash matting data created by rendering videos of the avatar. The video contains pose and expression variations of the avatar.
We render the fluorescent data of the avatar to assist EyelashNet generation and train a FlowNet2 [Ilg et al. 2017] model to correct the misaligned original and
colored eyelash image pairs.

Note that for clarity, we present RenderEyelashNet and Eyelash-
Net separately in this section. In practice, RenderEyelashNet is
included as part of EyelashNet for data augmentation. Moreover,
the augmented EyelashNet will be made publicly available.

7 EXPERIMENTS
In this section, we first present the implementation and data prepa-
ration details. Then we conduct ablation studies to validate the
effectiveness of the data capture stage and the alpha matte inference
stage, along with the rationality of our capturing system’s eyelash
coloring solution. After that, we qualitatively and quantitatively
evaluate the performance of our baseline matting network on Eye-
lashNet to demonstrate its effectiveness. We use four metrics for
quantitative evaluation, including the mean square error (MSE), the
sum of absolute error (SAD), the gradient (Grad), and the connec-
tivity error (Conn) proposed in [Rhemann et al. 2009]. Finally, we
apply our work to important practical applications including avatar
generation, eyelash recoloring, and eyelash editing.

7.1 Implementation and Data Preparation Details
Network implementation details. We follow the training setups
in [Li and Lu 2020]. Both the alpha matte inference network and
the baseline network are initialized using the customized ResNet-
34 [He et al. 2016] backbone (trained on ImageNet [Deng et al.
2009]) of [Li and Lu 2020] and trained for 160,000 epochs with
batch size 4, taking about 16 hours. We use Adam optimizer with
𝛽1 = 0.5, 𝛽2 = 0.99. The learning rate is initialized to 4 × 10−4 and
adaptively adjusted with warm-up and cosine decay [Goyal et al.
2018; He et al. 2019; Loshchilov and Hutter 2017]. We utilize Pytorch
(version 1.2) [Paszke et al. 2019] to train the networks on a desktop
PC with single NVIDIA GTX 1080 (8GB memory), Intel Xeon 3.6
GHz CPU, and 16GB RAM.
Data augmentation. Since EyelashNet is captured from a lab-

based environment, the diversity of the captured data is limited to
the experiment scene. Hence we further apply data augmentation

to enhance our baseline model. Since the accuracy of Eyelashes is
sensitive to the image quality, we use a Gaussian blur with a random
kernel size from 5 to 30 to blur the foreground and the alpha matte
with a probability of 0.2. Then a gamma correction (the value is
randomly sampled from 0.5 to 1.4) is applied to adjust the illumi-
nation of eyelash images. Next, a random affine transformation is
applied to the foreground image and the corresponding alpha matte
image. We generate a random rotation, scaling, shearing as well as
vertical and horizontal flipping in the affine transformation. After
that, the foreground images are then converted into the HSV color
space, and different jitters are imposed on the hue, saturation and
value. For each eyelash foreground, we choose its background for
data augmentation according to the following probability distribu-
tion. We use its original image directly (i.e., its original background)
as input image with a probability of 0.5, and select an image ran-
domly from EyelashNet and the MS COCO dataset [Lin et al. 2014]
with a probability of 0.4 and 0.1, respectively, as the background for
composition.

Baseline test dataset. Normally, a ground truth eyelash matting
dataset is needed to evaluate the quality of EyelashNet. However, it
is almost impossible to obtain the ground truth eyelash alpha mattes
from the captured images. A compromise is to manually segment
out the eyelashes as masks. But this is also a very labor-intensive and
time-consuming work, even for a professional artist. In our work,
it takes about 30 minutes for an artist to segment eyelashes from
one captured image. We annotate 94 and 31 eyelash masks from
captured images (noted as captured test dataset) and Internet images
(noted as Internet test dataset), respectively, as the approximated
ground truth. We use them as the baseline test dataset to evaluate
the performance of our method for EyelashNet generation, so as
the baseline network.

Device setup. In our capturing system, we use Canon 80D cam-
eras with the continuous shooting mode (7 fps) to take normal and
colored photos. Base on Travor LED flash (0.01 second exposure
time), we replace the original LED lamps by CZINELIGHT LED
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Fig. 10. From top to bottom, we show the original image, the estimated alpha mattes of the baseline network (takes an RGB image as input), the inference
network (takes a eyelash mask and an RGB image as input), respectively.

Table 1. The quantitative results on MSE, SAD, Grad, Conn metrics of 3 stages in progressive training.

MSE SAD Grad Conn
R0 R1 R2 R0 R1 R2 R0 R1 R2 R0 R1 R2

Captured test dataset 0.00389 0.00278 0.00242 3.32 2.48 2.30 3.68 2.84 2.54 1.47 1.18 1.11

lamps (0.06 Watt and 365nm). Moreover, we use a 365nm ultraviolet
transmittance filter (UV pass filter type: ZWB2/UG1) to filter out as
much visible light as possible. We use MZlaser medical positioning
laser (power from 0.35 mW to 0.45 mW) for positioning the head,
and the positioning process usually takes less than 2 seconds. We
strongly advise that the subject closes his/her eyes and does not
look at the light source directly to eliminate safety concerns. It is
safe enough even if the medical positioning laser illuminates the
subject’s eye carelessly.
Comparison. We compare our results with a confidence map of

Gabor filter that is used to extract hair in Nam et al. [2019]. As the
source codes of the hair extraction method of Nam et al. [2019] are
not open, we re-implement their hair extraction part with our own
source codes by setting parameters: 𝑘𝑠𝑖𝑧𝑒 = 5, _ = 4, 𝜎 = 2.3 for the
Gabor filter. This may bring differences between our results and the
results of their implementation. We open our re-implementation
source codes in the supplemental material to make the comparisons
more reasonable.

7.2 Ablation Study
We perform an ablation study to evaluate the efficacy of the eyelash
mask (Fig. 3 (f)) and the alpha matte inference network. As the pro-
gressive training is based on RenderEyelashNet, we give preference
to networks with better domain adaptation [Wang and Deng 2018]
between RenderEyelashNet and the captured data. Thus we only
need to evaluate the warm-up network’s performance used in the
progressive training. Since the trimap is usually unavailable for the
eyelash images, we ablate the inference network with the baseline
network, which takes an RGB image as input. We train the alpha
matte inference network (takes an eyelash mask and an RGB image
as input) and the baseline network on RenderEyelashNet, and test
on 20 randomly sampled captured data, respectively. We perform
a similar perceptual selection strategy as used in the progressive
training. 20 raters were asked to vote the better eyelash alpha matte
estimation between the test results of the inference network and

the baseline network. In the end, there were 295 (73.75%) and 105
(26.25%) preferences from the inference network and the baseline
network, respectively. Fig. 10 presents 8 random examples from
the 20 captured data samples. The results of the inference network
(Fig. 10, row 3) show better performance than those of the base-
line network (Fig. 10, row 2), including the semantic completeness
of eyelashes, the quality of eyelashes on pupil regions, etc. Using
the eyelash mask further reduces the covariate shift between the
synthetic eyelash dataset and the captured dataset.

7.3 Evaluation of EyelashNet Generation
The progressive training strategy is designed to progressively adapt
the matting inference network to real captured data. In our work,
we first train a warm up network on RenderEyelashNet, and then
we perform two rounds of progressive training, resulting in two
intermediate networks and datasets. We denote three different train-
ing datasets including RenderEyelashNet, the first and the second
round of datasets as R0, R1, R2 for simplicity. Table 1 shows the
quantitative results. Compared with the warm up network trained
on RenderEyelashNet (R0), the mean square error (MSE), sum of
absolute error (SAD), gradient error (Grad) and connectivity error
(Conn) on the captured test dataset decrease gradually during two
round (R1 and R2) of progressive training. The qualitative result in
Fig. 11 also clearly demonstrates the effectiveness of the progressive
training strategy.
We also conducted a user study to estimate the influence of the

invisible fluorescent substance on the status of eyelashes. We ran-
domly selected 30 normal eyelash images (painted with the fluo-
rescent substance) from EyelashNet, and asked 20 raters to view
these pictures and answer "Is there anything visible painted on the
eyelashes?". 582 (97%) vote "NO", and 18 (3%) vote "YES", which
shows that putting an invisible fluorescent substance on eyelashes
has little impact on the eyelash appearance.
To evaluate the illumination influence of the UVA flash, we cal-

culate the MAE of each pixel in the captured colored and normal
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Fig. 11. Exemplars of progressive training. From left to right, we show the original image, the estimated alpha mattes of R0, R1, R2, respectively.

Table 2. The quantitative results of 4 methods (Nam et al. [2019], Li and Lu [2020], RenderEyelashNet and Ours (EyelashNet), respectively) applying on the
captured test dataset and the Internet test dataset, respectively. Note that Li and Lu [2020] use a manually labeled trimap (b) as input while our method does
not need such a time consuming labelling process. Even so, our approach still has better overall performance for eyelash matting.

Captured test dataset Internet test dataset
SAD MSE Grad Conn SAD MSE Grad Conn

Nam et al. [2019] 6.88 0.01032 6.76 1.11 10.12 0.0205 20.31 1.46
Li and Lu [2020] 3.68 0.00534 5.15 0.88 5.02 0.0093 10.49 0.83
RenderEyelashNet 2.91 0.00352 3.57 1.28 3.80 0.0035 6.73 1.60
Ours 2.47 0.00259 2.57 1.23 3.00 0.0011 4.35 1.48

(a) Input (b) Trimap (c) Nam et al. [2019] (d) Li and Lu [2020] (e) RenderEyelashNet (f) Ours (g) Ground truth

Fig. 12. Exemplars of the quantitative results of 4 methods (Nam et al. [2019], Li and Lu [2020], RenderEyelashNet and EyelashNet (Ours), respectively)
applying on the baseline testing dataset (containing both captured and Internet images). From left to right, we present the input images, the corresponding
trimaps, the results of Nam et al. [2019], Li and Lu [2020], RenderEyelashNet, and ours, respectively.

eyelash images in EyelashNet, resulting in 5.46, 2.98, 2.90 MAE error
and 1.94, 0.166, 0.154 variance for R, G, B channels of 24-bit images,
respectively, showing that the UVA flash has little impact to the
illumination of the captured images.

7.4 Evaluation of EyelashNet
We perform both qualitative and quantitative evaluations on Eye-
lashNet. We train the baseline network on EyelashNet and Ren-
derEyelashNet. Then we compare with [Li and Lu 2020] (trained
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Fig. 13. Exemplars of alpha matte estimation on daily-captured images under different variations, such as poses, illuminations, shadows, ages, races, etc.

on the Adobe Image Matting dataset [Xu et al. 2017]), the state-of-
the-art on natural image matting, and a Gabor-filter-based method
[Nam et al. 2019], respectively. We evaluate the results of the above
four methods on the baseline testing dataset. Table 2 shows the
quantitative results. Compared with [Nam et al. 2019] and [Li and
Lu 2020], our results achieve significant improvements. And our
results are better than those from the baseline model trained on
RenderEyelashNet. Fig. 12 presents the qualitative comparisons. Our
results are visually better than RenderEyelashNet’s results and have
remarkable improvement over those from [Nam et al. 2019] and [Li
and Lu 2020]. The results in both Table 2 and Fig. 12 demonstrate
the effectiveness of our EyelashNet dataset.

7.5 Results on Daily-captured Images
Even though we capture the eyelash images in a lab-based envi-
ronment, the baseline network trained on EyelashNet (augmented
with RenderEyelashNet) can estimate eyelash alpha mattes from

in-the-wild images under variations of illuminations, ages, races,
etc.. Fig. 13 shows the results of the baseline network trained using
EyelashNet on daily-captured images. We can observe that the base-
line network is able to estimate high-quality eyelash alpha matte
with a single RGB image without additional inputs. The eyelashes
inside the fuzzy and self-shadow regions are properly estimated.
The test images in Fig. 13 and Fig. 15 are courtesy of unsplash.com
[Unsplash 2021].

7.6 Applications
Our method enables automatic and high-quality eyelash matting. It
can be easily incorporated in various eyelash related applications,
in particular for processing 2D portrait images and 3D virtual hu-
mans. First, eyelashes may induce noise and artifacts in MVS-based
high-quality 3D face parametric reconstruction. The artists have to
remove eyelashes and reconstruct eyelids manually, which can easily
cost several hours. Our system can be used to automatically remove
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Fig. 14. Exemplars of alpha matte estimation on multi-view images.

eyelashes from multi-view images, resulting in better reconstructed
geometry that can be further used for parametric reconstruction
with better efficacy. Fig. 14 shows an example of eyelash alpha matte
estimation in multi-view images, where our method can provide
pose-free, high-quality eyelash alpha matte estimation that is par-
ticularly suitable for multi-view reconstruction applications. For
example, as shown in Fig. 1 (e-i), without our eyelash removal pro-
cess, the reconstructed eyelash geometry (see Fig. 1 (e)) may induce
noises and artifacts when fitting the eyelid during the parametric
reconstruction (see Fig. 1 (f)), which require very expensive manual
repair. Our eyelash matting enables us to automatically remove the
eyelashes in the input multi-view images, and reconstruct a better
geometry of the eye region as shown in Fig. 1 (g). As a result, more
faithful and high-quality eyelids can be reconstructed after the para-
metric reconstruction of the 3D face. We show the full rigged avatar
in Fig. 1 (i) for completeness. Also, high-quality eyelash matting can
be applied for cosmetic design as shown in Fig. 1 (d), where the eye-
lashes are recolored and lengthened under fine control with the help
of eyelash alpha mattes. The results show that our eyelash matting
system can provide fine-grained eyelash manipulation, and hence

has wide applications on eyelash cosmetic design, high-quality face
parametric reconstruction, etc.

8 DISCUSSION
While our eyelash matting system can achieve high-quality eyelash
matte estimation, it still has some restrictions. First, due to the lack
of ground truth for captured image (which is almost impossible to
obtain), we use pseudo ground truth for evaluation, thus we cannot
provide an accurate test of the networks. Second, the performance
of eyelash matting could be affected in some extreme cases. For
example, for portraits with occlusions (Fig. 15 (a)) or glasses (Fig.
15 (b)), artifacts may arise. The estimated eyelash alpha mattes in
very strong shadow regions may not be accurate (Fig. 15 (c)). Since
EyelashNet is captured from a laboratory environment, eyelids and
eyeball may be detected bymistake in rare cases. This can be reduced
by increasing the diversity of the dataset. Our model may matte out
eyebrows, which is reasonable as eyebrows and eyelashes are simi-
lar in terms of the underlying hair structure. This can be resolved
by using facial landmarks [Wu et al. 2018] to exclude the eyebrow
region from the input image (as shown in the last row of Fig. 15 (d)).
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(a) (b) (c)

(d)

Fig. 15. Example failure cases. Our method may cause artifacts due to
occlusions (a), and may fail to estimate accurate eyelashes for portraits with
glasses (b), and strong shadows (c). Our model may also matte out eyebrows
in addition to eyelashes, depending on the region of interest for matting (d).

Third, for safety concerns and the aim of collecting clean data, some-
times the eyelashes were colored inadequately. On the one hand,
the progressive training strategy refines the alpha matte inference
network on its perceptually correct results. The weak supervision in
the perceptual selection reduces the inference network’s bias to part
of the captured dataset. On the other hand, overfitting may arise for
the inference network when performing more rounds of progressive
training, limiting the inference network’s generalization capability.

9 CONCLUSION AND FUTURE WORK
In this work, we create EyelashNet, the first eyelash matting dataset
based on a newly developed fluorescent-based capture system and
an alpha matte inference network. Our dataset consists of 10,672
training data (4,860 captured image pairs and 4,965 rendered image
pairs) and 847 testing data (540 captured image pairs and 307 ren-
dered image pairs). Each pair consists of an eyelash image and its
corresponding eyelash alphamatte.With the dataset, we train a base-
line matting network that can automatically estimate high-quality
eyelash alpha mattes from real-world portrait images with various
eye expressions, illuminations, and shadows. Our method is able to
accurately extract eyelash alpha mattes from fuzzy and self-shadow
regions such as pupils, which is almost impossible by manual anno-
tations. Through extensive experiments, we have demonstrated the
effectiveness of the capture system and inference network. Results
show that the baseline network trained on our dataset outperforms
prior methods and can estimate accurate eyelash mattes on inter-
net images. We also demonstrate the applications of our work on
high-quality virtual human reconstruction and cosmetic design. Our
work makes a step towards high-fidelity eyelash matting, and it has
the potential to inspire other works in the field. In the future, we

will explore 3D eyelash reconstruction methods based on the es-
timated eyelash alpha mattes, and GAN-based methods to refine
the estimated eyelash alpha matte to improve the eyelash details in
fuzzy regions. We are also interested in extending our method to
estimate high-quality eyebrow and beard alpha mattes.
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