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A B S T R A C T

Most online multi-object tracking methods utilize bounding boxes and center points inherited from detectors
as the base models to represent targets. Limited performance is obtained with these base models alone for
tracking. Complex networks are generally applied on top to extract high-level discriminative features such as
appearance embeddings and motion predictions for data association. However, the weakness in the feature
representation of bounding boxes and center points degrades the tracking performance. In this paper, we
propose a novel base model that represents targets with key lines for tracking, which can provide discriminative
features and accurate target affinity measurements. Besides, we use the proposed key lines to select low-
scored detections and unmatched tracks to recover missed targets and enhance identity consistency. Based
on this, we apply the proposed line-based modeling strategy to existing trackers and propose a line-based
Cascade Tracking algorithm to associate targets in three stages, and very competitive results are achieved on
MOTChallenge benchmarks. Extensive experiments with improved performances demonstrate the effectiveness
and generalization of key lines in providing discriminative features and enhancing tracking performance.
1. Introduction

Multi-object tracking (MOT) is one of the fundamental problems in
computer vision with various applications such as video surveillance
and autonomous vehicles. The tracker localizes objects of interest in
video frames and links identical objects to form trajectories. Thus, the
MOT algorithm can be divided into two tasks: object detection and data
association. Although prominent progress has been achieved, tracking
with high accuracy and efficiency is still very challenging.

With the advances in object detection, many MOT methods follow
the tracking-by-detection (TBD) paradigm, where objects are obtained
by off-the-shelf detectors and associated with existing tracks to form
trajectories across frames. Methods of this paradigm usually utilize
extra networks to extract high-level features for data association, in-
cluding appearance features and motion predictions. Despite the supe-
rior performance, separating detection and data association impedes
the TBD paradigm from end-to-end tracking. The joint-detection-and-
tracking (JDT) paradigm has been proposed to mitigate the separation
issue in TBD, where detection and feature extraction are unified in
a single network and performed simultaneously. Most JDT trackers
are developed from detectors by adding tracking-related sub-networks,
and state-of-the-art (SOTA) results are achieved. For instance, Track-
tor (Bergmann et al., 2019) and QDTrack (Pang et al., 2021) are
developed from Faster R-CNN (Ren et al., 2015), CenterTrack (Zhou
et al., 2020) and FairMOT (Zhang et al., 2021) are transformed from
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CenterNet (Zhou et al., 2019). Two commonly used target base repre-
sentations, including bounding boxes and center points, are naturally
inherited from detectors to represent targets and extract features. As
shown in Fig. 1, we denote the bounding boxes and center points as
base models, which apply to TBD and JDT paradigms but are produced
at different stages.

Tracking can be performed only with base features (including po-
sitional relations between target bounding boxes and center points),
e.g., based on bounding box overlaps (Bewley et al., 2016; Bochinski
et al., 2017), but achieves limited performance in crowded scenes.
Thus, high-level features, including appearance embeddings and mo-
tion predictions, are typically utilized for enhancing the accuracy of
similarity measurement and identity (ID) assignment, and base fea-
tures are typically employed to provide accessory information where
high-level feature fails. Recent methods primarily focus on generating
discriminative appearance features and predicting reliable positions,
and the representation of base models is ignored.

We argue that the existing base models are not optimal for MOT due
to the following observations. As shown in Fig. 2(a), in box-based rep-
resentation, the target bounding box significantly overlaps with nearby
targets in crowded scenes, which can be wrongly suppressed by post-
processing in the tracking procedure, thus vulnerable to occlusions.
Besides, bounding boxes can capture features of surrounding targets
and backgrounds, reducing the temporal consistency and reliability of
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Fig. 1. Comparison of the TBD and JDT paradigms regarding the base models and high-
level features extraction. For TBD, the base models are obtained from the detector first,
and then extra networks are used to produce high-level features. For JDT, a unified
network simultaneously produces base models and high-level features.

target appearance embeddings. On the other hand, the point-based
representation shown in Fig. 2(b) only accesses position information
with the center points. Extracting center-based identity embeddings is
widely adopted, which can be contaminated by occlusions and camera
motion. Furthermore, coarse base features provided by base models
are normally employed with high-level features (Zhang et al., 2021;
Zhou et al., 2020) for similarity measurement, resulting in false identity
assignments in crowded scenes.

In this paper, we propose a novel base model for targets in MOT, in
which the target is represented by a key line formed by the center point,
top point, and the line linking them, as shown in Fig. 2(c). The centers
and tops are the two most prominent and consistent positions for tar-
gets. One can recognize each target from the crowds with these points
easily. Unlike bounding boxes and center points, the proposed key lines
are more representative since they are located inside the targets and
are associated tightly with the position and size of the targets. Thus,
they can provide accurate and informative base features. Besides, high-
level features captured based on key lines are more discriminative in
crowded scenes, leading to accurate affinity measurements and identity
assignments. Experiments demonstrate that the identity consistency of
existing trackers can be enhanced by applying the proposed key lines.

We establish key lines by predicting the centers and tops in a unified
network, LineNet. A point grouping scheme is introduced to process
the predicted positions to construct key lines. Besides, a line-based
measuring and scoring strategy is presented to calculate similarity
with base features provided by key lines. Meanwhile, the low-scored
detections and unmatched tracks are selected and reused, which can
help to recover missed targets and enhance the features of targets.
Finally, a novel line-based Cascade Tracking algorithm is proposed to
exploit the base and high-level features produced based on key lines,
where targets are associated in a cascade way.

We apply the proposed key lines to six state-of-the-art trackers by
replacing their original base models, and notable improvements in
IDF1 are achieved for all trackers, demonstrating that the key line
is a generic base representation with superior generalization and can
help to improve the identity consistency of tracks. Furthermore, by
integrating the proposed line-based modeling strategy with existing
methods, we propose two trackers, namely CenterLine and FairLine,
by predicting line-based displacements and extracting line-based ap-
pearance embeddings. Significant improvements and very competitive
performances are achieved on the MOTChallenge benchmark, showing
that line-based features are more discriminative and robust for tracking.

In summary, this paper makes the following contributions:

• We propose a novel base representation in which targets are
represented by key lines.

• We propose a line-based measuring strategy for similarity mea-
surement and identity assignment based on discriminative fea-

tures of key lines.

2

Fig. 2. Comparison of different base models. (a) The box-based model uses bounding
boxes to describe targets. (b) The point-based model represents targets by center points.
(c) The proposed key line comprises the center and top points and a line linking them,
which is located inside the target and can provide discriminative features.

• We propose a detection and key track selection strategy based on
key lines to recover missed targets and enhance the features of
targets.

• We apply key lines to two existing trackers to extract line-based
high-level features and propose a novel Cascade Tracking algo-
rithm to associate targets and handle challenging scenarios.

The rest of the paper is organized as follows. Related works are re-
viewed in Section 2. The algorithmic details are introduced in Section 3.
The experimental results and discussions are presented in Section 4.
Section 5 summarizes this work.

2. Related work

The close relationship with object detection enables MOT to benefit
from significant progress in detection while inheriting the representa-
tion methods used in detectors. We review representation methods in
detection and tracking below.

2.1. Box-based representation

Many MOT methods adopt off-the-shelf detectors, where the targets
of interest are localized and represented with bounding boxes. In earlier
approaches, overlaps of the bounding boxes are used as metrics in
IOUTracker (Bochinski et al., 2017) and SORT (Bewley et al., 2016)
for high-speed tracking. DeepSORT (Wojke et al., 2017) improves
SORT by adopting the ReID models and associates targets with appear-
ance features extracted from the target bounding boxes. Recent MOT
methods follow the JDT framework to pursue an end-to-end tracking
paradigm with box-based representations. Trakctor (Bergmann et al.,
2019) is developed from Faster R-CNN (Ren et al., 2015) by reusing
the bounding box regression head. QDTrack (Pang et al., 2021) adds
an embedding branch on top of Faster R-CNN to extract appearance
features from bounding boxes. SiamMOT (Shuai et al., 2021) builds
region-based single object trackers upon Faster R-CNN to predict target
positions by reusing box-based region features.

These methods directly inherit the bounding box representation and
box-based feature extraction, thus are vulnerable to occlusions and
distractors caused by contaminated regional visual features inside the
bounding boxes and coarse post-processing procedure Non-Maximum-
Suppression (NMS). Efforts have been made to address these draw-
backs. Attention mechanisms are adopted in TADAM (Guo et al., 2021),
guiding the tracker to focus more on targets inside bounding boxes
and less on distractors. An occlusion handling strategy is proposed
in TMOH (Stadler and Beyerer, 2021) that models the occluding and
occluded tracks to improve box-based identity management. However,
these methods rely heavily on detectors and are hard to generalize
to other methods. The proposed key lines can provide discriminative
target features and help enhance the robustness of existing trackers in
crowded scenes.
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2.2. Point-based representations

Objects are detected by locating center positions in the point-based
detectors (Zhou et al., 2019), and point-based representations and
feature extractions are also inherited. The affinity between targets is
typically calculated by extracting center-based identity embeddings and
predicting center-based motion predictions since center positions can
only provide limited spatial information. CenterTrack (Zhou et al.,
2020) adds a center-based offsets prediction branch on top of Center-
Net (Zhou et al., 2019) to update the target position. FairMOT (Zhang
et al., 2021) adds a ReID branch upon CenterNet to extract center-
based identity embeddings. SOTMOT (Zheng et al., 2021) is built from
CenterNet by adding a single object tracker branch and treating objects
as points while tracking.

Despite the simplicity, center-based features are vulnerable to oc-
clusions and small targets, and efforts have been made to enhance
the robustness of center-based methods. PermaTrack (Tokmakov et al.,
2021) proposes a spatial–temporal recurrent memory module to predict
occluded target center locations. Besides, learnable points are proposed
to improve the center-based modeling. MTrack (Yu et al., 2022a)
proposes representing targets as multiple adaptively selected key points
to enrich the representative features. AdaMOT (Liang et al., 2022a) uses
a set of learnable points as the target descriptor for robust feature ex-
tractions. Despite their effectiveness, these methods require dedicated
networks and complex training strategies and are hard to generalize
to other methods. However, the proposed key lines can enhance the
identity consistency of existing trackers by simple replacement without
re-training, and the line-based modeling strategy can be generalized to
existing methods for better tracking performance.

2.3. Other representations

There are some other base representations used in detection and
tracking. TubeTK (Pang et al., 2020) introduces bounding tubes that
combine the spatial–temporal locations of objects by linking target
bounding boxes. However, the bounding tube process tracks offline
with sizeable computational complexity. This tube-based representa-
tion is also employed in video object detection (Kang et al., 2017; Tang
et al., 2019). Besides, the objects are detected by locating the top-left
and the bottom-right corners in CornerNet (Law and Deng, 2018), and
it requires an additional Associative Embedding method (Newell et al.,
2017) to group the points into target positions. Moreover, the learnable
points representation is proposed in RPT (Ma et al., 2020) for visual
tracking, in which the target is represented as a set of representative
points. The dense points method in RPT is unsuitable for MOT since the
postures of targets are comparatively simple, and the number of targets
is unlimited in MOT. Thus, this point set will introduce additional
confusion and computational burdens in crowded scenes for MOT.

3. Methodology

In this section, we first introduce the key lines learning network,
LineNet, line-based measuring and scoring strategies. We then illustrate
the detection and key track selection strategies. Finally, we apply key
lines to existing trackers and introduce the proposed Cascade Tracking
algorithm.

3.1. Key lines learning network

We build LineNet based on CenterNet, which has three output
branches, including a heatmap of center positions 𝐻 𝑡

𝑐𝑒𝑛𝑡, the predictions
of center offset 𝑜𝑓𝑓 𝑡

𝑐𝑒𝑛𝑡, and the sizes of targets, i.e., widths and heights.
The center offsets refine the center positions to reduce the influence of
network downsampling. An overview of our network is shown in Fig. 3,
where two consecutive frames and a single-channel heatmap 𝐻 𝑡−1

𝑖𝑛 are
used as input. The input heatmap is rendered by encoding centers of
3

Fig. 3. Overview of the proposed LineNet, which takes two consecutive frames along
with an input heatmap as inputs. The outputs contain heatmaps and offsets of the
centers and tops, the size of targets. Line-based high-level features can be obtained by
adding corresponding networks.

key tracks of the previous frame. The key tracks denote true positive
target tracks, selected with the proposed selection strategy introduced
in Section 3.4. The input heatmap incorporates the temporal and histor-
ical information of tracks in past frames, and it helps to enhance target
features despite their matching states, guiding the network to localize
occluded targets accurately.

As shown in Fig. 3, we add two prediction branches on top of
backbone features to obtain the heatmap 𝐻 𝑡

𝑡𝑜𝑝 and offsets 𝑜𝑓𝑓 𝑡
𝑡𝑜𝑝 of top

ositions. These branches are constructed similarly to center prediction
etworks by stacking convolutional layers. The centroids of top lines in
round truth bounding boxes are rendered with the Gaussian functions
o form training labels. The rendered heatmap �̂�𝑥𝑦 at the location
𝑐𝑥, 𝑐𝑦

)

is:

̂𝑥𝑦 = exp(−

(

𝑥 − 𝑐𝑥
)2 +

(

𝑦 − 𝑐𝑦
)2

2𝜎2
), (1)

where the standard deviation value 𝜎 is a function that changes ac-
cording to the target size (Zhou et al., 2019). The Gaussian functions
in Eq. (1) are also used for input heatmap rendering by encoding the
centers of key tracks. We use Focal Loss (Lin et al., 2017) to calculate
the training objective of the top prediction heatmap as follows:

𝐿𝑡
𝑥𝑦 = − 1

𝑁
∑

𝑥𝑦

{(

1 − 𝑅𝑥𝑦
)𝛼 log𝑅𝑥𝑦, 𝑖𝑓 �̂�𝑥𝑦 = 1,

(

1 − �̂�𝑥𝑦
)𝛽 (𝑅)𝛼𝑥𝑦 log

(

1 − 𝑅𝑥𝑦
)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(2)

in which 𝑅𝑥𝑦 is the estimated heatmap at location
(

𝑐𝑥, 𝑐𝑦
)

, 𝑁 denotes
the number of objects, 𝛼 and 𝛽 are set to 2 and 4, which are hyper-
parameters of the Focal Loss. The training objectives of the top offsets
prediction are calculated with L1 Loss, the same as the center offsets
prediction of CenterNet.

The centers and tops of targets are detected based on the response
on heatmaps 𝐻 𝑡

𝑐𝑒𝑛𝑡 and 𝐻 𝑡
𝑡𝑜𝑝, respectively, and key lines can be con-

structed with a grouping scheme. Moreover, to extract discriminative
line-based high-level features, we add corresponding sub-networks, as
shown in Fig. 3, and build two line-based trackers on top of existing
methods.

3.2. Constructions of key lines

On frame 𝐼 𝑡−1, existing tracks are denoted as  𝑡−1 = {𝑇 𝑡−1
1 , 𝑇 𝑡−1

2 ,…},
where 𝑡 is the time step, and 𝑇 𝑡−1

𝑘 represents the 𝑘th track that contains
a series of bounding boxes with the same identity. The detections of
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the frame 𝐼 𝑡 are a set of bounding boxes denoted as 𝑡 = {𝑏𝑡1, 𝑏
𝑡
2,…},

where the 𝑖th bounding box is represented by 𝑏𝑡𝑖 = (𝑥𝑡𝑖, 𝑦
𝑡
𝑖, 𝑤

𝑡
𝑖, ℎ

𝑡
𝑖), i.e., the

enter coordinates, width, and height. With two adjacent frames and
rendered heatmap as input, the LineNet outputs the heatmaps of the

enters 𝐻 𝑡
𝑐𝑒𝑛𝑡 and the tops 𝐻 𝑡

𝑡𝑜𝑝 of the frame 𝐼 𝑡. The width 𝑤 and height
of each target are also obtained.

The proposed key line is the one that can represent the target with
wo prominent points, namely the center point and the top point, as
ell as the line linking them. Key lines remain smooth and continuous

n movement and are easily identified in crowds. Given the outputs of
ineNet, we can obtain a set of centers 𝐶 𝑡

𝑐𝑒𝑛𝑡 =
{

𝑐𝑡1, 𝑐
𝑡
2,… , 𝑐𝑡𝑁

}

from the
𝑡
𝑐𝑒𝑛𝑡 with NMS, where 𝑁 is the number of centers. Similarly, 𝑀 top

ositions 𝑇 𝑡
𝑡𝑜𝑝 =

{

𝑡𝑡1, 𝑡
𝑡
2,… , 𝑡𝑡𝑀

}

are obtained from the heatmap 𝐻 𝑡
𝑡𝑜𝑝. Ide-

lly, the number of centers and tops are equal if all target representative
oints are found and can be matched correctly. However, occlusion,
istractors, and camera motion will lead to noisy detections and missed
argets, resulting in missing representative points. Therefore, we pro-
ose a point grouping scheme to process the predicted points to build
ey lines for targets.

To be more specific, given 𝑁 detected center points 𝐶 𝑡
𝑐𝑒𝑛𝑡, 𝑀 de-

ected top points 𝑇 𝑡
𝑡𝑜𝑝, and estimated heights of all targets, where the

th center point is represented by horizontal and vertical coordinates
s 𝑐𝑡𝑖 =

(

𝑥𝑡𝑐𝑒𝑛𝑡,𝑖, 𝑦
𝑡
𝑐𝑒𝑛𝑡,𝑖

)

, the 𝑖th top point being 𝑡𝑡𝑖 =
(

𝑥𝑡𝑡𝑜𝑝,𝑖, 𝑦
𝑡
𝑡𝑜𝑝,𝑖

)

, and its

eight is ℎ𝑡𝑖. We can calculate the top 𝑐𝑡𝑡𝑖 =
(

𝑥𝑡𝑐𝑡,𝑖, 𝑦
𝑡
𝑐𝑡,𝑖

)

for each detected
center by referring to the corresponding height, where 𝑥𝑡𝑐𝑡,𝑖 = 𝑥𝑡𝑐𝑒𝑛𝑡,𝑖,
𝑡
𝑐𝑡,𝑖 = 𝑦𝑡𝑐𝑒𝑛𝑡,𝑖 +

ℎ𝑡𝑖
2 . Doing so allows us to obtain the calculated top set

𝑇 𝑡
𝑐𝑡 =

{

𝑐𝑡𝑡1, 𝑐𝑡
𝑡
2,… , 𝑐𝑡𝑡𝑁

}

for all predicted centers.
Detections of high quality should accurately estimate the position

nd size of targets. We can associate the detected tops 𝑇 𝑡
𝑡𝑜𝑝 and cal-

culated tops 𝑇 𝑡
𝑐𝑡 of the same target based on spatial similarity. The

etected and calculated tops are spatially close to each other for high-
uality localization. Thus, we compute the pairwise Euclidean distance
etween every top point in the predicted and calculated tops and link
hem with the greedy algorithm. After that, we evaluate the matching
airs as below:

𝑖,𝑗,𝑡 =

√

(

𝑥𝑡𝑡𝑜𝑝,𝑖 − 𝑥𝑡𝑐𝑡,𝑗
)2

+
(

𝑦𝑡𝑡𝑜𝑝,𝑖 − 𝑦𝑡𝑐𝑡,𝑗
)2

, (3)

𝑠𝑖,𝑗,𝑡 = exp(− 𝑑𝑖,𝑗,𝑡
|

|

|

𝑦𝑡𝑐𝑎𝑙,𝑖 − 𝑦𝑡𝑐𝑡,𝑖
|

|

|

), (4)

where 𝑑𝑖,𝑗,𝑡 is the Euclidean distance between the 𝑖th predicted top
(𝑥𝑡𝑡𝑜𝑝,𝑖, 𝑦

𝑡
𝑡𝑜𝑝,𝑖) and the 𝑗th calculated top (𝑥𝑡𝑐𝑡,𝑗 , 𝑦

𝑡
𝑐𝑡,𝑗 ), 𝑠𝑖,𝑗,𝑡 reveals the

matching quality of two linked points, normalized by the corresponding
size. The 𝑖th predicted top and the 𝑗th calculated top are considered
successful matching if they are linked by the greedy algorithm and their
matching score 𝑠𝑖,𝑗,𝑡 is higher than a predefined threshold 𝜂1. We use
the predicted tops to build key lines if matched with predicted centers,
and the calculated tops are used to build key lines for the unmatched
centers. By doing so, all objects are represented with key lines.

3.3. Line-based measuring and scoring

Line-based Measuring. A key line is denoted as 𝐿𝑡
𝑖 =

(

𝑐𝑡𝑖 , 𝑡
𝑡
𝑖, 𝑙

𝑡
𝑖 , 𝑣

𝑡
𝑖
)

,
where 𝑐𝑡𝑖 =

{

𝑥𝑡𝑐𝑒𝑛𝑡,𝑖, 𝑦
𝑡
𝑐𝑒𝑛𝑡,𝑖

}

and 𝑡𝑡𝑖 =
{

𝑥𝑡𝑡𝑜𝑝,𝑖, 𝑦
𝑡
𝑡𝑜𝑝,𝑖

}

are the center
and top coordinates, respectively. 𝑙𝑡𝑖 and 𝑣𝑡𝑖 represent the length and
velocity of this key line. The velocity of the key line is denoted as
𝑣𝑡𝑖 =

(

𝛥𝑣𝑡𝑥,𝑖, 𝛥𝑣
𝑡
𝑦,𝑖, 𝛥𝑣

𝑡
𝑙,𝑖

)

, representing the changes in position and length.
The velocity is updated after matching each frame with the moving
average strategy to prevent extreme changes, which can be calculated
as follows:

𝛥𝑣𝑡𝑥,𝑖 = 0.8 ⋅ 𝛥𝑣𝑡−1𝑥,𝑖 + 0.2 ⋅
(

𝑥𝑡𝑐𝑒𝑛𝑡,𝑖 − 𝑥𝑡−1𝑐𝑒𝑛𝑡,𝑖

)

, (5)

𝛥𝑣𝑡𝑦,𝑖 = 0.8 ⋅ 𝛥𝑣𝑡−1𝑦,𝑖 + 0.2 ⋅
(

𝑦𝑡𝑐𝑒𝑛𝑡,𝑖 − 𝑦𝑡−1𝑐𝑒𝑛𝑡,𝑖

)

, (6)

𝑡 𝑡−1 ( 𝑡 𝑡−1)
𝛥𝑣𝑙,𝑖 = 0.8 ⋅ 𝛥𝑣𝑙,𝑖 + 0.2 ⋅ 𝑙𝑖 − 𝑙𝑖 . (7) l

4

Fig. 4. The spatial distance between an existing track (shown in the green key line
𝐴�̃�) and a detected target (shown in the red key line 𝐵�̃�). 𝑙1 and 𝑙2 are the lengths of
he two key lines, and 𝑣1 and 𝑣2 are corresponding velocities. Only the measurements
f two targets are shown for clarity. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

Fig. 5. The temporal motion model. We build a temporal motion model with target
key lines to model the dynamics of tracks with five frames under the constant velocity
assumption. The dashed lines represent trajectories, and purple and orange circles
represent different IDs. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

As shown in Fig. 4, the existing track on the 𝛿 previous frame 𝐼 𝑡−𝛿 is
epresented by a green key line 𝐴�̃�, and a red key line 𝐵�̃� represents a

newly detected object on the frame 𝐼 𝑡. The line-based spatial distance
between these two targets is calculated as follows:

𝑑𝑠𝑝𝑎 = ‖𝐴𝐵‖ + ‖

‖

�̃��̃�‖
‖

+ ‖

‖

𝐴𝐵′
‖

‖

+ ‖

‖

𝑙1 − 𝑙2‖‖ , (8)

here ‖𝐴𝐵‖ and ‖

‖

�̃��̃�‖
‖

are the center and top distances between two
argets, respectively, and ‖

‖

𝐴𝐵′
‖

‖

is the distance from center 𝐴 to key line
�̃�. Therefore, ‖𝐴𝐵‖+‖

‖

�̃��̃�‖
‖

+‖
‖

𝐴𝐵′
‖

‖

in Eq. (8) represents the positional
istance between two targets. Also, 𝑙1 = ‖

‖

𝐴�̃�‖
‖

and 𝑙2 = ‖

‖

𝐵�̃�‖
‖

are the
engths of key lines. Thus, ‖

‖

𝑙1 − 𝑙2‖‖ provides information on the size
ifference.

Temporal features are vital for tracking as they focus on global
nd historical information, complementary to local and spatial features.
n order to explore temporal features, we build a line-based motion
odel on the temporal domain with the constant velocity assumption.
s shown by the two dashed lines in Fig. 5, the trajectories of targets are

ormed on the 𝑋-axis, 𝑌 -axis, and 𝑇 -axis. The lengths of key lines are
ncluded in building motion dynamics to introduce more information
n top of temporal positions. Five frames are used to construct the
otion model, which is experimentally demonstrated to be optimal. If

he trajectory length of a target is less than five (for instance, three
rames), we duplicate the first frame twice in this case. We update the
tate of targets on this motion model after matching in every frame and
ake predictions for unmatched targets by referring to their velocity.

With this motion model, we can measure the distance at the tra-
ectory level, which is distinguishable in occlusions and intersections.
s shown in Fig. 5, on frame 𝐼 𝑡, two targets are represented by key

ines 𝑃 𝑡𝑃 𝑡 and 𝑅𝑡�̃�𝑡, and their trajectories are 𝑃 𝑡𝑃 𝑡−1 and 𝑅𝑡𝑅𝑡−1,
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respectively. Based on this, we can obtain the distance from the center
point 𝑅𝑡 to trajectory 𝑃 𝑡𝑃 𝑡−1, i.e., ‖

‖

𝑅𝑡𝑃 ′
‖

‖

, by referring to the distance
of the point-to-line method on the 𝑋-axis and 𝑇 -axis. The trajectory
distance ‖

‖

𝑃 𝑡𝑅′
‖

‖

can be obtained similarly. On top of this, the trajectory
distance 𝑑𝑡𝑟𝑎𝑗 on frame 𝐼 𝑡 between these two targets can be obtained by
combining the mutual trajectory distances as follows:

𝑑𝑡𝑟𝑎𝑗 = ‖

‖

𝑃 𝑡𝑅′
‖

‖

+ ‖

‖

𝑅𝑡𝑃 ′
‖

‖

. (9)

Line-based motion cues can also be explored by predicting positions
and lengths of key lines in future frame 𝐼 𝑡+1 for all targets with
their velocity. The unmatched tracks are also predicted until their
inactive period reaches the predefined maximum length 𝛿𝑚𝑎𝑥. As shown
in Fig. 5, assuming the predicted key lines of these two targets are
𝑃 𝑡+1𝑃 𝑡+1 and 𝑅𝑡+1�̃�𝑡+1, respectively. The motion distance on frame 𝐼 𝑡+1

between these two targets can be obtained as follows:

𝑑𝑚𝑜 = 𝑑𝑠𝑝𝑎
(

𝑃 𝑡+1𝑃 𝑡+1, 𝑅𝑡+1�̃�𝑡+1) + ‖

‖

‖

𝑣𝑡
𝑃 𝑡𝑃 𝑡 − 𝑣𝑡

𝑅𝑡�̃�𝑡
‖

‖

‖

(10)

where 𝑑𝑠𝑝𝑎 is the spatial distance defined in Eq. (8).
The proposed spatial distance calculates the similarity between

targets on the 𝑋-axis and 𝑌 -axis on frame 𝐼 𝑡. The trajectory distance
provides the affinity information between different targets on the 𝑋-
axis and 𝑇 -axis on frame 𝐼 𝑡. Moreover, the motion distance measures
the similarity on the 𝑋-axis and 𝑌 -axis on frame 𝐼 𝑡+1 by inferring on the
𝑇 -axis, which is a temporal extension of spatial distance on the future
frame with velocity difference included. Thus, motion distance can help
to distinguish intersected targets and re-identify re-appeared targets, as
proved in experiments.

The overall cost can be obtained by combining the proposed 𝑑𝑠𝑝𝑎,
𝑑𝑡𝑟𝑎𝑗 , and 𝑑𝑚𝑜 between two frames, the cost matrix can be formed, and
identity assignment is solved by the greedy algorithm. Note that the
unmatched tracks are predicted for two continuous frames each time,
in which way they can have the same affinity measurements as matched
tracks.

Line-based Scoring. Most methods solve the identity assignments
based on local pairwise matching cost, lacking the criterion of identi-
fying falsely assigned identities, degrading the quality of trajectories.
As illustrated in Li et al. (2023), the tracker should be able to identify
and deactivate false assignments for better identity consistency. Hence,
we propose a post-processing procedure that evaluates each identity
assignment quality by comparing key lines of matched pairs, which can
be assessed as below:

𝑠𝑎𝑠 = exp(−
𝑑𝑠𝑝𝑎 + 𝑑𝑡𝑟𝑎𝑗 + 𝑑𝑚𝑜

ℎ
), (11)

where 𝑑𝑠𝑝𝑎, 𝑑𝑡𝑟𝑎𝑗 , and 𝑑𝑚𝑜 are the spatial, trajectory, and motion dis-
ances of linked pairs, respectively, and ℎ is the height of the matched

track before matching. The obtained 𝑠𝑎𝑠 reflects the quality of matched
pairs, and we set a threshold 𝜂2 to determine the matching quality
that empowers the tracker to identify and deactivate false assignments,
i.e., matchings with scores higher than 𝜂2 are deemed valid, and
matchings with scores lower than 𝜂2 are invalid and inactivated.

3.4. Detections and key tracks selection

Detection Selection Strategy. Parameter tuning is vital and sensi-
tive for most methods, which is time-consuming and makes the tracker
biased to a specific dataset. The detection threshold that distinguishes
the positives and negatives is essential for trackers since existing tracks
match with detections on a frame-wise basis for identity assignments.
A large detection threshold will filter out more positive responses,
decrease false positives (FP), introduce false negatives (FN), and vice
versa. Besides, as shown in Fig. 6, some low-scored detections are
true positives, which may contain valuable information for tracking.
Therefore, a more objective criterion for selecting detections is of great
need, for one thing, to reduce the sensitivity to parameters and reliance
on detectors, and for another thing, to recover the missed targets.
5

Fig. 6. Examples of missing targets. The targets highlighted by red arrows are
mistakenly suppressed by (a) small-sized target, (b) severe occlusion, and (c) large
camera motion. All three cases are processed under threshold 0.4, causing false
negatives and track terminations. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

We propose a detection selection strategy to recover missed targets
and mitigate the above sensitivity and reliance issues. Assume 𝜃 is
the detection threshold, and the detections with scores higher than
𝜃, denoted as ℎ, are directly used for data association. As for the
detections with scores lower than 𝜃, 𝑙 = {𝑏1𝑙 , 𝑏

2
𝑙 ,…}, we propose to

recover true positive targets within 𝑙 by measuring the similarity
between their predicted tops and calculated tops. To be more specific,
given the 𝑖th low-scored detection 𝑏𝑖𝑙 =

{

𝑥𝑖𝑙,𝑐𝑒𝑛𝑡, 𝑦
𝑖
𝑙,𝑐𝑒𝑛𝑡, 𝑤

𝑖
𝑙 , ℎ

𝑖
𝑙

}

, the

corresponding predicted top is 𝑡𝑖𝑙,𝑡𝑜𝑝 =
{

𝑥𝑖𝑙,𝑡𝑜𝑝, 𝑦
𝑖
𝑙,𝑡𝑜𝑝

}

if it existed. We first

obtain the calculated top 𝑡𝑖𝑙,𝑐𝑡 =
{

𝑥𝑖𝑙,𝑐𝑡, 𝑦
𝑖
𝑙,𝑐𝑡

}

by referring to its center

nd height as 𝑥𝑖𝑙,𝑐𝑡 = 𝑥𝑖𝑙,𝑐𝑒𝑛𝑡, 𝑦
𝑖
𝑙,𝑐𝑡 = 𝑦𝑖𝑙,𝑐𝑒𝑛𝑡 +

ℎ𝑖𝑙
2 . Then, we can evaluate the

similarity between predicted and calculated tops as:

𝑠𝑖,𝑡𝑑𝑒𝑡 = exp(−

√

(

𝑥𝑖𝑙,𝑡𝑜𝑝 − 𝑥𝑖𝑙,𝑐𝑡
)2

+
(

𝑦𝑖𝑙,𝑡𝑜𝑝 − 𝑦𝑖𝑙,𝑐𝑡
)2

ℎ𝑖𝑙
). (12)

If 𝑠𝑖,𝑡𝑑𝑒𝑡 is higher than the threshold 𝜂3, representing the key line
of this target is high in quality, and the corresponding detection is
considered a high-quality case. By doing so, a set of detections 𝑙ℎ
can be recovered from 𝑙 and used for data association, allowing
the tracker to fully utilize the information provided by detectors and
reducing the sensitivity to the detection threshold. Note that 𝜂3 is less
sensitive than 𝜃 as 𝜂3 is tuned with low-scored detections included,
which is less relevant to the training datasets and the performance of
detectors.

Key Tracks Selection Strategy. The threshold 𝜏 that determines
hat to encode on the LineNet input heatmap is also essential and

ensitive. Existing tracks with high confidence are sometimes false
ositives, which will misguide the network if used in input heatmap
endering. Likewise, some unmatched tracks still existed in the tracking
cene as false negatives. Those unmatched tracks can guide the network
o recover targets in future frames by enhancing corresponding features
n the input heatmap. Thus, we propose a key track selection strategy,
hich can filter out mistake targets from matched tracks and select
issed targets from unmatched tracks.

The key tracks represent the true positive tracks, including matched
ey tracks 𝑘,𝑚𝑎 and unmatched key tracks 𝑘,𝑢𝑛, which are used for
nput heatmap encoding. The matched key tracks are selected from
atched tracks with false positives removed, and unmatched key tracks

re the false negatives that are picked among unmatched tracks. The
ey track selection relies on key lines and a scoring strategy. More
pecifically, given a set of matched tracks  𝑡−1

𝑚𝑎 = {𝑇 𝑡−1
𝑚𝑎,1, 𝑇

𝑡−1
𝑚𝑎,2,…} on

frame 𝐼 𝑡−1, we evaluate the matching quality(between the 𝑖th track and
the 𝑗th detection) of the 𝑖th track by scoring as follows:

𝑠𝑖,𝑗,𝑡 = exp(−
𝑑𝑖,𝑗,𝑡𝑠𝑝𝑎 ), (13)
𝑚𝑎𝑡 ℎ𝑖,𝑡−1
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where 𝑑𝑖,𝑗,𝑡𝑠𝑝𝑎 denotes the spatial distance between the 𝑖th track and the
𝑗th detection proposed in Eq. (8), and ℎ𝑖,𝑡−1 is the height of the 𝑖th track
on frame 𝐼 𝑡−1.

The matched tracks with scores higher than 𝜂2 are regarded as key
tracks and are used for input heatmap rendering, and the tracks with
lower scores are potential false positives that are wrongly matched.
Note that although matching quality has been evaluated by scoring
shown in Eq. (11), we still perform selection in Eq. (13) since the former
scores in Eq. (11) show the similarity before identity assignments,
which may make mistakes in the crowded scene. The scores in Eq. (13)
reflect the matched pairs after assignment and work as a post-selection
to prevent false positives from being encoded.

The unmatched tracks are predicted with motion models and are
selected based on their last matching states before removal. The longer
the unmatched period is, the less reliable the prediction is. Thus, for
the 𝑖th unmatched track, we attenuate its score according to the age of
being inactive to obtain its confidence of being a key track as follows:

𝑠𝑖,𝑡𝑢𝑛𝑡 = 𝑠𝑖𝑙𝑎𝑠𝑡 ⋅ exp(−
𝑎𝑡𝑢𝑛𝑡
𝛿𝑚𝑎𝑥

), (14)

where 𝑠𝑖𝑙𝑎𝑠𝑡 is the last matching score of the 𝑖th unmatched track, 𝑎𝑡𝑢𝑛𝑡
accumulates the age of the unmatched period, and 𝛿𝑚𝑎𝑥 is the max-
age of the being inactivation before removal. We only consider the
unmatched tracks within 𝛿𝑘𝑒𝑦 = 8 frames as verified to be optimal
in experiments. The unmatched tracks with scores higher than 𝜂3 are
deemed key tracks and used for the input heatmap encoding.

3.5. Line-based high-level features extraction

The proposed key lines proved a superior way for extracting high-
level features, which are more discriminative and robust than the
box-based and point-based features and can enhance the tracking per-
formance. To prove the effectiveness of line-based high-level feature
extraction, we build two line-based trackers, namely CenterLine and
FairLine, which are built by predicting line-based displacements to
enhance CenterTrack (Zhou et al., 2020) and extracting line-based
identity embeddings to enhance FairMOT (Zhang et al., 2021).

As shown in Fig. 7, line-based high-level features are extracted by
adding corresponding sub-networks on top of LineNet. Specifically, to
produce CenterLine, we add a top displacement prediction network on
top of CenterTrack by stacking a 3 × 3 convolution layer and a 1 × 1
convolution layer. We learn to predict top displacements using the same
regression objective as center displacements in CenterTrack, and the
prediction loss is calculated as follows:

𝐿𝑡
𝑑𝑖𝑠 =

1
𝑁

𝑁
∑

𝑖=1

|

|

|

�̂�𝑝𝑡𝑖
− 𝑑𝑡𝑖

|

|

|

, (15)

where �̂�𝑝𝑡𝑖
is the predicted top displacement on frame 𝐼 𝑡 for the 𝑖th

arget, 𝑑𝑡𝑖 = 𝑝𝑡−1𝑖 − 𝑝𝑡𝑖 is the top displacement labels between adjacent
rames, 𝑝𝑡−1𝑖 and 𝑝𝑡−1𝑖 are the ground truths of target positions in two

frames, and 𝑁 is the number of targets.
The top and center displacements are used separately to update

corresponding positions and obtain the locations of target key lines on
previous frames. The similarity between different targets is computed
with the proposed line-based measuring strategy, and identities are
assigned with the greedy algorithm.

Similarly, as shown in Fig. 7, to build FairLine, we add a 1 × 1
convolution layer with 128 kernels on top of the backbone features of
FairMOT to extract top-based appearance embeddings, and fuse them
with center-based appearance embeddings by channel concatenation.
The training labels are identity-dependent, i.e., we treat each identity
as a class in training the feature embedding network. Therefore, we
transform the fused center-based and top-based features by applying a
1 × 1 convolution layer to reduce the feature dimension to obtain the
final line-based identity embeddings, which align with corresponding
one-hot annotations.
6

Fig. 7. The architecture sketch of CenterLine and FairLine, which are built on top
of LineNet by adding a top-based displacement prediction branch and a top-based
appearance embedding branch, respectively.

Finally, a fully connected layer and a Softmax function are em-
ployed to map the line-based identity embeddings to a class distribution
vector 𝑝(𝑘). The training loss of the line-based appearance embedding
network is shown as follows:

𝐿𝐼𝐷 = −
𝑁
∑

𝑖=1

𝐾
∑

𝑘=1
𝐿𝑖(𝑘)𝑙𝑜𝑔 (𝑝(𝑘)) , (16)

where 𝑁 is the number of targets, 𝐾 is the number of different
identities in the training data, and 𝐿𝑖(𝑘) denotes the one-hot class label
of different identities. The proposed FairLine is trained with uncertainty
loss (Kendall et al., 2018) to balance detection and feature embeddings.

3.6. Cascade tracking algorithm

To associate targets with base and high-level features of key lines for
CenterLine and FairLine, we propose the Cascade Tracking algorithm,
which requires three steps to accomplish data association by dealing
with targets of different types.

Given the detections 𝑡
ℎ, existing tracks  𝑡−1

𝑚𝑎 , and unmatched tracks
𝑡−1
𝑢𝑛 , we first divide the unmatched tracks  𝑡−1

𝑢𝑛 into two subsets by the
ey track selection strategy: the unmatched key tracks  𝑡−1

𝑢𝑛,𝑘𝑒𝑦 and the
nmatched non-key tracks  𝑡−1

𝑢𝑛,𝑛𝑜𝑘. Then, we select a set of high-quality
ubset 𝑡

𝑙ℎ from low-scored detections 𝑡
𝑙 by the detection selection

trategy. We combine existing tracks  𝑡−1
𝑚𝑎 and unmatched key tracks

𝑡−1
𝑢𝑛,𝑘𝑒𝑦 to form a track pool  𝑡

1 .
For the first matching stage, the high-scored detections 𝑡

ℎ are
atched with tracks in  𝑡

1 by measuring with line-based high-level
eatures. In detail, for CenterLine, we use the predicted line-based
isplacements to update the positions of detections and associate them
ith tracks by line-based measuring. For FairLine, the similarity is
btained by calculating the cosine distance of line-based appearance
eatures. Note that only unmatched key tracks are associated in this
tage instead of all unmatched ones. The unmatched detections of 𝑡

ℎ
n this stage are denoted as 𝑡

𝑢ℎ1, and the unmatched tracks from  𝑡
1

re denoted as  𝑡
𝑢1.

In the second stage, we try to recover the low-scored true positives
rom 𝑡

𝑙ℎ by matching the detections in 𝑡
𝑙ℎ with tracks in  𝑡

𝑢1. The
imilarity is calculated by the proposed line-based measuring strategy
ith base features of key lines, and the matching is solved by the greedy
lgorithm. After matching, the proposed line-based scoring is followed
s a track deactivation post-processing to enhance identity consistency.
he remaining unmatched detections in 𝑡

𝑙ℎ are no longer considered
o reduce false positives.

In the third stage, we intend to solve the long-term tracking prob-
em. Most tracks in  𝑡−1

𝑢𝑛,𝑛𝑜𝑘 are unmatched for several frames, and
e combine tracks  𝑡−1

𝑢𝑛,𝑛𝑜𝑘 with tracks  𝑡
𝑢2, which are left from the

second stage, to form another track pool  𝑡
2 . Then, we match  𝑡

2 with
unmatched detections in 𝑡

𝑢ℎ1 with the line-based measuring strategy.
With similarity calculated by base features of key lines, the cost of
matching candidates is obtained with local and global information
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Algorithm 1 Line-based Cascade Tracking.
Input:

• The high-scored detections 𝑡
ℎ on frame 𝐼 𝑡

• The low-scored detections 𝑡
𝑙 on frame 𝐼 𝑡

• The existing tracks  𝑡−1
𝑚𝑎 on frame 𝐼 𝑡−1

• The unmatched tracks  𝑡−1
𝑢𝑛 on frame 𝐼 𝑡−1

Output:
• The tracks  𝑡

𝑚𝑎 on frame 𝐼 𝑡

Main Algorithm:
1: ∕ ∗ 𝐹 𝑖𝑟𝑠𝑡 𝑆𝑡𝑎𝑔𝑒 ∗ ∕
2: Divide the unmatched tracks  𝑡−1

𝑢𝑛 into unmatched key tracks  𝑡−1
𝑢𝑛,𝑘𝑒𝑦

and unmatched non-key tracks  𝑡−1
𝑢𝑛,𝑛𝑜𝑘 with the key track selection

strategy;
3: Combine the existing tracks  𝑡−1

𝑚𝑎 with  𝑡−1
𝑢𝑛,𝑘𝑒𝑦 to form the track pool

 𝑡
1 ;

4: Compute the cost matrix of matching candidates between 𝑡
ℎ and

 𝑡
1 based on the line-based high-level features (line-based dis-

placement predictions for CenterLine and line-based appearance
embeddings for FairLine);

5: Associate targets between 𝑡
ℎ and  𝑡

1 ;
6: Output matched detections 𝑡

𝑚ℎ1, matched tracks  𝑡
𝑚1, unmatched

detections 𝑡
𝑢ℎ1, and unmatched tracks  𝑡

𝑢1;
7: ∕ ∗ 𝑆𝑒𝑐𝑜𝑛𝑑 𝑆𝑡𝑎𝑔𝑒 ∗ ∕
8: Select detections 𝑡

𝑙ℎ from 𝑡
𝑙 with the detection selection strategy;

9: Compute the cost matrix of matching candidates between 𝑡
𝑙ℎ and

 𝑡
𝑢1 based on the line-based measuring strategy;

10: Associate targets between 𝑡
𝑙ℎ and  𝑡

𝑢1;
11: Output matched detections 𝑡

𝑚𝑙ℎ, matched tracks  𝑡
𝑚2, and un-

matched tracks  𝑡
𝑢2;

12: ∕ ∗ 𝑇ℎ𝑖𝑟𝑑 𝑆𝑡𝑎𝑔𝑒 ∗ ∕
13: Combine the unmatched non-key tracks  𝑡−1

𝑢𝑛,𝑛𝑜𝑘 and unmatched
tracks  𝑡

𝑢2 to form the track pool  𝑡
2 ;

14: Compute the cost matrix of matching candidates between 𝑡
𝑢ℎ1 and

 𝑡
2 based on the line-based measuring strategy;

15: Associate targets between 𝑡
𝑢ℎ1 and  𝑡

2 ;
16: Output matched detections 𝑡

𝑚ℎ2, matched tracks  𝑡
𝑚3, and

unmatched detections 𝑡
𝑢ℎ2;

17: ∕ ∗ 𝑇 𝑟𝑎𝑐𝑘 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∗ ∕
18: Initialize unmatched detections 𝑡

𝑢ℎ2 as new tracks.

included, enabling the targets to be re-identified accurately. The un-
matched tracks that are matched in this stage can re-activate their
identity and reduce ID switches. A few matching candidates are formed
in the third stage, with predictions of unmatched tracks being the
majority. Thus, a smaller threshold 𝜂4 is used in the scoring procedure
as the threshold. Finally, the remaining unmatched detections in 𝑡

𝑢ℎ1
are initialized as new tracks.

In the proposed line-based Cascade Tracking Algorithm, most easy
targets with high detection confidence are tracked in the first stage.
Besides, the unmatched tracks  𝑡

𝑢1 used in the second stage are mostly
‘hard’ cases, which are hard to track owing to occlusions and distrac-
tors. The low-scored detections 𝑡

𝑙ℎ, generally ignored in the previous
methods, are activated when matched. Thus, tracking helps with detec-
tion in the second stage by recovering low-scored ones. Moreover, the
unmatched tracks are kept with predictions, and long-range trajectories
with consistent ID can be formed with track re-identification in the
third stage, enhancing the long-term tracking ability of trackers. Alg.
1 summarizes the proposed line-based Cascade Tracking algorithm.

4. Experiments

The tracking performance of our method is evaluated on the MOTCha

lenge benchmarks, including MOT16, MOT17 (Milan et al., 2016), and

7

MOT20 (Dendorfer et al., 2020). We first introduce the datasets and
parameters of our methods. Since there is no validation dataset in the
MOTChallenge benchmarks, we split the MOT17 training dataset into
two halves. We use the first half for training and the second half for
validation to conduct ablation studies and verify the effectiveness of
each component. Finally, we compare our trackers with state-of-the-art
methods and discuss the limitations of our methods.

4.1. Datasets and metrics

The commonly used MOTChallenge benchmark datasets are MOT16,
MOT17, and MOT20, which include tracking scenes with various
conditions and online test servers. The MOT17 is the most popular
dataset with 7 training sequences and 7 sequences for testing. MOT16
has the same tracking sequences as MOT17 but differs in the provided
detections and annotations. The detections of MOT17 are provided by
DPM (Felzenszwalb et al., 2009), Faster R-CNN, and SDP (Yang et al.,
2016), and only DPM is provided for MOT16. The MOT20 is a newly
released dataset recorded from extremely crowded scenes, containing
4 train and 4 test sequences with detections provided by Faster R-CNN.

The tracking performance is usually evaluated from different aspects
with several metrics. The two most important metrics are MOTA (Multi-
ple Object Tracking Accuracy) (Bernardin and Stiefelhagen, 2008) and
IDF1 (ID F1 score) (Ristani et al., 2016). MOTA reveals the tracking
convergence, and IDF1 describes the identity consistency. Other metrics
are also employed for evaluation, such as Most Tracked (MT), Most Lost
(ML), False Positives (FP), False Negatives (FN), ID Switches (IDS), and
FPS (Frames Per Second).

4.2. Implementation details

We build our LineNet upon CenterNet (Zhou et al., 2019), a variant
of DLA34 (Yu et al., 2018) adopted in FairMOT (Zhang et al., 2021) is
used as the backbone network in our method, where more skip connec-
tions between low-level and high-level features are added for feature
fusion, and up-sampling is performed by deformable convolution (Dai
et al., 2017). The training processes and parameters of CenterLine and
FairLine mainly follow CenterTrack and FairMOT, respectively. Our
network is pre-trained on CrowdHuman (Shao et al., 2018) and fine-
tuned on the MOT17/MOT20 with Adam (Kingma and Ba, 2014). We
train CenterLine for 80 epochs with a starting learning rate of 3.125𝑒−4
and drop by a factor of 10 at 60 epochs, and the batch size is 8. We
train FairLine for 35 epochs with a starting learning rate of 10𝑒−4 and
drop by a factor of 10 at 25 epochs, and the batch size is 10.

In our method, the parameters 𝜃 and 𝜏 are 0.4 and 0.5, respectively,
following the baseline trackers CenterTrack and FairMOT to reduce the
influence of parameters, and 𝛿𝑚𝑎𝑥 is set to 30 for track rebirth following
baseline trackers. 𝜂1 is 0.9 for constructing key lines, 𝜂2 is 0.2 for
identifying false assignments and selecting key tracks, 𝜂3 is 0.9 to filter
out detections of low quality, and 𝜂4 is 0.7 for matching evaluation. 𝛿𝑘𝑒𝑦
is 8 for key tracks encoding on the input heatmap. These parameters
are selected empirically by experiments and proved optimal.

4.3. Effectiveness of key lines

The effectiveness of key lines. We propose the key line as a
generic and distinguishable base model with superior representative
ability. In order to prove the effectiveness of the key lines in providing
discriminative base features, we perform ablations regarding different
base models by tracking with base features and testing on the MOT17
training set. Tracking results are shown in Table 1. CBox denotes the
tracker that represents targets with bounding boxes and tracks by
measuring the overlaps of target bounding boxes. CPoint represents
the tracker that uses center points as the base model and tracks by
measuring the center-based spatial distance. CLine is the tracker that
models targets with the proposed key lines and calculates similarity
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Table 1
Comparisons of tracking performance obtained by different base models on the MOT17
training dataset. BR represents the base representation of each method, and TR denotes
the track rebirth strategy.

Method BR TR MOTA↑ IDF1↑ FP↓ FN↓ IDS↓

CBox Box 62.2 49.1 2434 15278 2658
CPoint Point 65.8 63.8 2450 15294 692
CLine Line 68.4 65.6 1801 14569 664

CBox Box ✓ 62.2 47.5 2163 15919 2299
CPoint Point ✓ 65.7 69.0 2112 15967 393
CLine Line ✓ 68.2 72.6 1585 15220 358

Table 2
The performance of the state-of-the-art methods with different base representations on
the MOT17 training dataset. The Features column gives the different features used for
data association, including combinations of A (Appearance), M (Motion), B (Box), P
(Point), and L (Line).

Method Features MOTA↑ IDF1↑ FP↓ FN↓ IDS↓

CenterTrack M+P 66.2 69.2 2113 15888 219
CenterTrack† M+L 68.0 71.1(+1.9) 1298 15665 270

JDE A+B 63.5 64.1 6178 33428 1363
JDE† A+L 63.5 64.4(+0.3) 6219 33410 1323

TraDeS M+P 68.2 71.7 1913 14962 291
TraDeS† M+L 68.2 72.0(+0.3) 1912 14962 282

FairMOT A+B 69.1 72.8 1976 14443 299
FairMOT† A+L 69.3 73.4(+0.6) 2307 14009 296

PermaTrack M+P 69.5 71.9 2655 13528 255
PermaTrack† M+L 69.8 75.5(+3.6) 2606 13487 199

GSDT A+B 72.7 72.2 9948 19965 798
GSDT† A+L 72.7 72.5(+0.3) 9930 19974 805

using the proposed line-based measuring strategy. All methods use the
detections provided by CenterNet for a fair comparison, and TR denotes
the track rebirth.

Table 1 shows that the proposed line-based method outperforms
the box-based and point-based methods. The vulnerability of bounding
box overlaps in crowded scenes often leads to false assignments, thus
resulting in the lowest IDF1 and the largest ID switches in CBox.
Tracking results of CBox worsen when using track rebirth, showing
that box-based re-identifications are inaccurate and unreliable. Besides,
CPoint precedes CBox, demonstrating the discrimination of point-based
modeling in crowded scenes. However, it still lags behind CLine since
line-based base features are more distinguishable, which can increase
the accuracy of point-based affinity measurement and boost MOTA
(from 65.8 to 68.4) and IDF1 (from 63.8 to 65.6) without track rebirth.
A more significant increment of 3.6 (from 69.0 to 72.6) in IDF1 is
observed with track rebirth, demonstrating the effectiveness of line-
based target re-identification. In addition, a significant increment of 7.0
(from 65.6 to 72.6) in IDF1 is achieved with track rebirth for CLine,
proving the superiority of key lines in forming long-term tracks. Thus,
the results of Table 1 prove that the proposed key line is a generic
and informative base representation, which can provide discriminative
base features and is more reliable in long-term predictions and target
re-identification.

The generalizations of key lines. We apply key lines to six re-
ently published state-of-the-art methods, including CenterTrack (Zhou
t al., 2020), JDE (Wang et al., 2020b), TraDeS (Wu et al., 2021),
airMOT (Zhang et al., 2021), PermaTrack (Tokmakov et al., 2021),
nd GSDT (Wang et al., 2020a) to demonstrate the generalization and
ffectiveness of the proposed line-based representations. The results
re obtained by testing on the MOT17 training set and are shown in
able 2. In the table, key lines are built with calculated tops by referring
o target center positions and heights to replace original base models
bounding box or center point) in each method. Therefore, key line
eplacements in Table 2 do not need to re-train networks, and extra

omputations are negligible. p

8

Table 3
The performance comparison of base model constructing strategies and network settings
of LineNet.

Setting MOTA↑ IDF1↑ FP↓ FN↓ IDS↓

key line + bottom 67.9 71.4 1600 15322 395
key line + left + right 68.0 71.9 1648 15244 356

w/o top prediction 68.1 72.4 1629 15207 366
w/o input heatmap 64.6 68.8 998 17644 410

key line (Ours) 68.2 72.6 1585 15220 358

In Table 2, the methods with † indicate the variant tracker with
ey lines as base models. For example, CenterTrack utilizes motion
redictions for data association with point-based representation (mo-
ion + point, M+P). We apply key lines to CenterTrack to construct
enterTrack†, which adopts the key lines to represent targets and
easure similarity with line-based measurement (motion + line, M+L).

ikewise, data association in FairMOT is performed with center-based
ppearance features, and the box overlaps are used for matching after
ppearance embeddings (appearance + box, A+B). We apply key lines
o FairMOT and replace bounding boxes for matching at the second
tage of data association (appearance + line, A+L), and this variant is
enoted as FairMOT†.

Evident improvements in IDF1 are achieved with key line replace-
ent on all trackers in Table 2, especially for methods with motion
redictions, i.e., CenterTrack and PermaTrack. The reason is that key
ines can provide more discriminative features to compensate for the
eakness of point-based predictions and measurements. The enhance-
ent is less significant in trackers using appearance features since

hey are already discriminative and can handle most targets. However,
he increments show that key lines can work parallel with appear-
nce embeddings to improve the similarity measurement and enhance
dentity consistency. Thus, Table 2 demonstrates the generalization
f the proposed key lines, which can be easily applied to existing
rackers as base models, compensate for coarse similarity provided by
ounding boxes and center points to enhance identity consistency, and
re compatible with high-level features.

.4. Line-based modeling and measuring

Ablation experiment on base model construction. Adding more
epresentative points to form a complicated base model is intuitive. As
n MTrack (Yu et al., 2022a) and AdaMOT (Liang et al., 2022a), a set
f points is used to obtain a finer semantic representation of targets.
lternative options include the bottom, left, and right points. Table 3
hows the comparisons of different options in building the key lines.

Specifically, we build the network to predict the target bottom
oints upon LineNet and measure affinities with added bottom points.
he results show that adding bottom points degrades MOTA and IDF1,

ncreasing FP, FN, and IDS. Similar phenomena are observed when
dding left and right points. The reason is that the bottom points of
argets in MOT17 are usually feet and ground, which change signif-
cantly in appearance and position while walking, thus deteriorating
he temporal consistency of affinity between identical targets. The left
nd right points change more frequently while walking, making the
orizontal lines less reliable in similarity measurement. Thus, those
epresentative points are inconsistent, and confusion is inevitable if
sed in data association. On the contrary, the proposed key lines are
ore prominent and consistent in crowded scenes, which can provide
iscriminative features with low computational complexity.
Ablation experiment on LineNet structure. We also investigate

he role of the top prediction branch and the input heatmap in LineNet.
s shown in Table 3, the tracking performance degrades slightly in
OTA and IDF1 without the top prediction branch, in which key lines

re constructed with calculated tops, demonstrating the importance of

redicted tops in building key lines. Besides, the effectiveness of the
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Fig. 8. The sensitivity analysis of parameters. (a) and (b) show the comparisons between the baseline and our method in MOTA and IDF1 regarding detection parameters 𝜃. (c)
and (d) show the comparisons of the encoding threshold 𝜏 between CenterTrack and our CenterLine in MOTA and IDF1.
Table 4
The ablations regarding the influence of different components proposed in the
line-based measuring strategy.

Spatial Trajectory Motion MOTA↑ IDF1↑ FP↓ FN↓ IDS↓

✓ ✓ 68.1 68.1 2243 14580 353
✓ ✓ 68.1 72.4 1585 15218 376
✓ ✓ 68.0 70.6 1628 15172 427
✓ ✓ ✓ 68.2 72.6 1585 15220 358

input heatmap is shown by the dramatic decrease in MOTA and IDF1
and increased FN of the method w/o input heatmap in Table 3, proving
that the input heatmap can enhance the features of true positives and
guide the network to recover missed targets.

Ablation experiment on line-based measuring. When calculating
affinity with base features, the proposed line-based measuring considers
spatial, trajectory, and motion distances. We investigate the influence
of each component, and the results are shown in Table 4. It is evident
that spatial distance is the most discriminative component since it
focuses on differences regarding position and size to distinguish targets,
which are vital in crowded scenes, as shown by a significant drop
of 4.5 (from 72.6 to 68.1) in IDF1 without spatial distance. Besides,
the trajectory distance is measured at the track level by considering
the temporal information. Thus, it can enhance identity consistency,
as witnessed by the reduced IDS (from 376 to 358) and improved
IDF1 (from 72.4 to 72.6) when using trajectory distance. Moreover,
the reduced MOTA and IDF1 and increased IDS show that motion
distance can help to recover and distinguish targets. On the one hand,
unmatched tracks are predicted and recovered if matched. On the other
hand, the velocity difference and temporal motion predictions help to
distinguish targets in interacting scenarios.

4.5. Parameters sensitivity analysis

The sensitivity analysis on the detection threshold. As discussed
in Section 3.4, the detection threshold 𝜃 is a vital yet sensitive param-
eter for most trackers, and we employ key lines to select low-scored
detections to reduce the sensitivity of related parameters. Fig. 8(a)
depicts the comparison of the MOTA between the baseline and our
method. The baseline tracker only utilizes high-scored detections for
data association. On the contrary, our method also matches detections
with scores lower than 𝜃 by selection on top of the baseline. As shown
n Fig. 8(a), our approach is more robust than the baseline in a border
ange of 𝜃, and superior performance is achieved without costly tuning.

A similar trend in IDF1 can be found in Fig. 8(b).
Besides, using all low-scored detections without selection will dra-

matically increase FP (from 1585 to 3024). Although MOTA increases
slightly by 0.2 (from 68.2 to 68.4), IDF1 drops by 1.9 (from 72.6 to
70.7), which verifies that using all low-scored targets without selections
will severely deteriorate identity consistency. Therefore, the proposed
detection selection strategy can better balance MOTA and IDF1 in
tracking.

The sensitivity analysis on the encoding threshold. As shown in
Figs. 8(c) and (d), the MOTA and IDF1 between our CenterLine and
9

Fig. 9. The performance of MOTA and IDF1 regarding the numbers of frames 𝛿𝑘𝑒𝑦 used
for rendering in the input heatmap.

Table 5
Comparisons with the state-of-the-art methods on the test sequence MOT17-06. The
best results are highlighted in bold.

Method BR MOTA↑ IDF1↑ MT↑ ML↓ IDS↓

CenterTrack Point 62.2 47.2 77 41 169
PermaTrack Point 61.1 48.0 82 44 220
TraDeS Point 59.9 57.3 73 50 211
CenterLine Line 60.5 62.2 84 39 161

CenterTrack are compared regarding the encoding parameter 𝜏. Our
tracker selects key tracks for rendering in the input heatmap, while
all existing tracks are rendered in CenterTrack. Obviously, our method
is more robust to the encoding threshold 𝜏 and performs better with
a broader range. The key tracks are true positive targets in tracking
scenes despite the matching state, incorporating helpful information
that can boost localization accuracy. Therefore, selecting key tracks for
rendering can reduce the sensitivity of the encoding threshold 𝜏 and
improve tracking performance.

The analysis of the encoding frames. Our method uses key tracks
from 𝛿𝑘𝑒𝑦 frames for input heatmap rendering. As in Fig. 9, MOTA
is relatively steady with different numbers of frames. However, IDF1
changes dramatically and peaks when using 8 frames. With more
frames, such as 10 and 12, MOTA remains at 68.2, but the number
of FP increases significantly introduced by incorrect rendering. The
more frames used, the more false positives are produced, resulting in
increased false assignments. Hence, we chose 𝛿𝑘𝑒𝑦 = 8 frames as it can
balance FP and FN, and yield the best performance.

4.6. Robustness analysis

The line-based Cascade Tracking algorithm is proposed to fully
utilize the information provided by key lines, which performs data
association in a cascade fashion to cope with challenging scenarios in
MOT. We compare the tracking performance of CenterLine with three
state-of-the-art methods to prove the effectiveness and discrimination
of line-based features in camera motions and low frame rates scenarios.

As shown in Table 5, we compare CenterLine with CenterTrack (Zhou
et al., 2020), PermaTrack (Tokmakov et al., 2021), and TraDeS (Wu
et al., 2021) in the test sequence MOT17-06, which is captured under
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Fig. 10. Qualitative results of different methods in long-term occlusions, camera
motions, and low frame rate scenarios. The results are obtained on testing sequence
MOT17-06. Taking the woman with a white shirt as an example, CenterTrack, TraDeS,
and FairMOT make continuous ID switches shown by red arrows. Our CenterLine can
preserve the ID and recover targets under occlusions. Different colors represent different
IDs. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

low frame rates (14 FPS) and camera motions scenarios. CentetrLine
utilizes line-based motion displacements and the line-based measuring
strategy for data association. CenterTrack, PermaTrack, and TraDeS
share the same base detector with CenterLine and associate targets
with center-based motion predictions. We summarize the performance
comparison in sequence MOT17-06 in Table 5. Our method achieves
the best performance in IDF1, MT, ML, and IDS, demonstrating the
superiority of key lines in coping with camera motions and low frame
rates scenarios, and longer trajectories are formed with consistent IDs
shown by the superiority in MT, IDS, and IDF1.

Fig. 10 shows qualitative comparisons in the test sequence MOT17-
06 between CenterLine and three state-of-the-art trackers, including
CenterTrack, TraDeS, and FairMOT. FairMOT and TraDeS extract ap-
pearance features for data association. We can see from the figure that
CenterTrack, TraDeS, and FairMOT make continuous ID switches in
challenging scenarios, as shown by red arrows. On the contrary, Cen-
terLine can tackle frequent occlusions and camera motions, reducing
ID switches and preserving the identities of targets to improve the
temporal consistency of trajectories. Therefore, key lines can provide an
accessible and reliable solution for long-term tracking under continuous
occlusion.

4.7. Benchmark comparison

We compare our method with state-of-the-art approaches in three
multi-object tracking benchmarks, including MOT16, MOT17, and
MOT20. The results of peer-reviewed trackers on the MOTChallenge
benchmark are listed in Table 6. As illustrated in Section 3.5, we
build two line-based trackers for comparison, including CenterLine and
FairLine, in which targets are associated with the proposed Cascade
Tracking algorithm and tested on private detection protocol.

Table 6 shows that our CenterLine outperforms the baseline tracker
CenterTrack (Zhou et al., 2020) in MOT17, showing the superiority
of line-based motion predictions. Key lines enable CenterLine to ac-
cess the suppressed low-scored detections, and obtain accurate motion
predictions and similarity measurements, thus achieving superior per-
formance. Likewise, FairLine improves baseline FairMOT in MOTA and
IDF1 in all datasets, demonstrating that line-based appearance embed-
dings are more distinguishable than point-based appearance features.
10
Fig. 11. Typical failure cases with ID switches. (a) shows typical failure cases from
scale variance caused by occlusions and camera motion. (b) shows typical failure cases
from fast camera motion and target small size. The failure cases are highlighted with
red arrows. Different colors represent different IDs.

Moreover, compared with CenterTrack and FairMOT, the inference
speeds (FPS in Table 6) of the proposed CenterLine and FairLine only
drop slightly, showing the potential of key lines in real-time applica-
tions. Thus, it can be observed that high-level features extracted based
on key lines are more discriminative and can effectively improve the
tracking performance.

Two similar MOT methods that exploit different representations
for appearance feature extraction are included in Table 6, namely
MTrack (Yu et al., 2022a) and AdaMOT (Liang et al., 2022a). MTrack
uses multiple adaptively selected key points to enrich the represen-
tative features of targets. AdaMOT adopts learnable points for robust
feature representations. Our FairLine extracts line-based appearance
embeddings and performs better in MOT16 and MOT17, verifying the
superiority of the proposed line-based appearance features in target
association. Although FairLine lags behind MTrack and AdaMOT in
MOTA in the MOT20 dataset, FairLine achieves superior IDF1 and
outperforms MTrack by a large margin, showing the superiority of line-
based embeddings in providing distinguishable features in extremely
crowded scenes.

Compared with the SOTA method CorrTracker (Wang et al., 2021),
which introduces spatial and temporal correlation modules to improve
the local features of targets, our FairLine achieves the second-best
MOTA in MOT16 and MOT17 datasets and exceeds CorrTracker in IDF1
in MOT20 dataset, showing the effectiveness of line-based appearance
embeddings in deal with small-sized target associations. Furthermore,
FairLine outperforms some of the recently proposed Transformer-based
methods, including TrackFormer (Meinhardt et al., 2022), MeMOT (Cai
et al., 2022), TransTrack (Sun et al., 2020), and GTR (Zhou et al.,
2022), showing the superiority of key lines in MOT.

4.8. Discussion

Despite the superior performance of our methods, there is still
plenty of room to improve. Fig. 11 shows some typical failure cases
of our trackers, highlighted by red arrows. The figures in Fig. 11(a) are
selected from the test sequence MOT17-12 produced by FairLine, and
the figures in Fig. 11(b) are from MOT17-14 produced by CenterLine.

The line-based appearance features of FairLine are inconsistent in
the tracking scenes shown in Fig. 11(a) owing to scale variance caused
by occlusions and camera motion. Likewise, the accuracy of motion
predictions of CenterLine is decreased in the tracking scenes shown in
Fig. 11(b) owing to fast camera motion and the small size of targets.
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Table 6
Comparisons with the state-of-the-art methods on MOT benchmark datasets. The third column BR indicates the base representation. The best result of each metric is highlighted
in bold, and the second best is underlined.

Dataset Method BR MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FPS↑

MOT16 CTracker (Peng et al., 2020) Box 67.6 57.2 32.9 23.1 8934 48305 1897 6.8
QDTrack (Pang et al., 2021) Box 69.8 67.1 41.6 19.8 9861 44050 1897 20.3
TraDeS (Wu et al., 2021) Point 70.1 64.7 37.3 20.0 8091 45210 1144 22.3
MTrack (Yu et al., 2022a) Point 74.3 72.9 50.6 15.7 19236 29554 642 –
FairMOT (Zhang et al., 2021) Point 74.9 72.8 44.7 15.9 10163 34484 1074 25.9
CSTrack (Liang et al., 2022b) Point 75.6 73.3 42.8 16.5 9646 33777 1121 15.8
RelationTrack (Yu et al., 2022b) Point 75.6 75.8 43.1 21.5 9786 34214 448 8.5
AdaMOT (Liang et al., 2022a) Point 76.2 76.1 49.8 16.3 15170 27769 688 26.0
CorrTracker (Wang et al., 2021) Point 76.6 74.3 47.8 13.3 10860 30756 979 15.6

CenterLine Line 70.2 67.2 39.3 16.2 11219 42018 1050 16.1
FairLine Line 76.2 74.0 46.8 12.8 12110 29930 2075 25.1

MOT17 CTracker (Peng et al., 2020) Box 66.6 57.4 32.2 24.2 22284 160491 5529 6.8
CenterTrack (Zhou et al., 2020) Point 67.8 64.7 34.6 24.6 18498 160332 3039 17.0
QDTrack (Pang et al., 2021) Box 68.7 66.3 40.6 21.9 26589 146643 3378 20.3
SOTMOT (Zheng et al., 2021) Point 71.0 71.9 42.7 15.3 39537 118983 5184 16.0
MeMOT (Cai et al., 2022) Box 72.5 69.0 43.8 18.0 37221 115248 2724 –
GSDT (Wang et al., 2020a) Point 73.2 66.5 41.7 17.5 26397 120666 3891 4.9
MTrack (Yu et al., 2022a) Point 73.5 72.1 49.0 16.8 53361 101844 2028 –
FairMOT (Zhang et al., 2021) Point 73.7 72.3 43.2 17.3 27507 117477 3303 25.9
PermaTrack (Tokmakov et al., 2021) Point 73.8 68.9 43.8 17.2 28998 115104 3699 11.9
RelationTrack (Yu et al., 2022b) Point 73.8 74.7 41.7 23.2 27999 118623 1347 8.5
TrackFormer (Meinhardt et al., 2022) Box 74.1 68.0 47.3 10.4 34602 108777 2829 5.7
CSTrack (Liang et al., 2022b) Point 74.9 72.3 41.5 17.5 23847 114303 3567 15.8
GTR (Zhou et al., 2022) Box 75.3 71.5 – – 26793 109854 2859 19.6
AdaMOT (Liang et al., 2022a) Point 75.7 75.5 48.5 17.2 39777 95385 2226 26.0
CorrTracker (Wang et al., 2021) Point 76.5 73.6 47.6 12.7 29808 99510 3369 15.6

CenterLine Line 69.7 66.7 38.3 18.0 29007 138945 3207 16.1
FairLine Line 76.1 73.3 45.6 13.4 29508 101385 4203 25.1

MOT20 UMA (Yin et al., 2020) Box 53.1 54.4 21.5 31.8 22893 239534 2251 –
FairMOT (Zhang et al., 2021) Point 61.8 67.3 68.8 7.6 103440 88901 5243 13.2
MeMOT (Cai et al., 2022) Box 63.7 66.1 57.5 14.3 47882 137983 1938 –
TransTrack (Sun et al., 2020) Box 64.5 59.2 49.1 13.6 28566 151377 3565 14.9
CorrTracker (Wang et al., 2021) Point 65.2 69.1 66.4 8.9 79429 95855 5183 8.5
CSTrack (Liang et al., 2022b) Point 66.6 68.6 50.4 15.5 25404 144358 3196 4.5
TrackFormer (Meinhardt et al., 2022) Box 68.6 65.7 53.6 14.6 20348 140373 1532 5.7
SOTMOT (Zheng et al., 2021) Point 68.6 71.4 64.9 9.7 57064 101154 4209 8.5
AdaMOT (Liang et al., 2022a) Point 69.1 71.4 61.4 10.6 58471 99833 1792 12.1
MTrack (Yu et al., 2022a) Point 69.2 63.5 68.8 7.5 96123 86964 6031 –

CenterLine Line 61.5 59.2 46.1 18.2 26976 170388 2072 8.9
FairLine Line 65.2 70.2 60.7 10.6 61172 114836 4278 12.2
As a result, our trackers make continuous ID switches, shown by red
arrows. These errors could be remedied with the help of a dedicated
memory module that dynamically stores and updates the features of
targets (Lu et al., 2023; Cai et al., 2022). Moreover, the proposed key
line is applied to pedestrians in this paper, and our future research
will concentrate on building a generic base model for vehicle tracking
scenarios.

5. Conclusion

In this work, we proposed the key line as the generic base repre-
sentation for MOT, which can provide discriminative features for data
association, outperforming commonly used box-based and point-based
models. Besides, we proposed the line-based measuring strategy, which
aligns with line-based representation and provides accurate affinity
of targets. Then, we proposed to utilize low-scored detections and
unmatched tracks by selection based on key lines to recover missed
targets. Finally, two line-based trackers are proposed by applying the
line-based modeling strategy to existing trackers, and we presented a
novel line-based Cascade Tracking algorithm that associates targets in
three stages. Competitive results in MOT benchmarks and extensive
experiments demonstrate that key lines can be easily applied to existing
methods to improve identity consistency, and very competitive results
can be obtained by applying line-based modeling to existing trackers.
We thus believe that the proposed key line is a generic and effective
base representation for multi-object tracking.
11
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