
MWFormer:Mesh UnderstandingwithWindow-based Transformer
Hao-Yang Peng a, Meng-Hao Guo a, Zheng-Ning Liu b, Yong-Liang Yang c, Tai-Jiang Mu a,∗

a Key Laboratory of Pervasive Computing, Ministry of Education, Department of Computer Science and Technology, Tsinghua
University, Beijing, 100084, China
b Fitten Tech Co., Ltd., Beijing, 100084, China
c Department of Computer Science, University of Bath, Bath, BA2 7AY, United Kingdom

a r t i c l e i n f o a b s t r a c t

Polygonal mesh has been proven to be a powerful representation of 3D shapes, given its efficiency in
expressing shape surface while maintaining geometric and topological information. Increasing efforts
have been made to design elaborate deep convolutional neural networks for meshes. However, these
methods naturally ignore the global connectivity among mesh primitives due to the locality nature
of convolution operations. In this paper, we introduce a transformer-like self-attention mechanism
with down-sampling architectures for mesh learning to capture both the global and local relationships
among mesh faces. To achieve this, we propose BFS-Pooling, which can convert a connected mesh
into discrete tokens (i.e., a set of adjacent faces) with breath-first-search (BFS) and naturally build
hierarchical architectures for mesh learning by pooling mesh tokens. Benefiting from BFS-Pooling, we
design a hierarchical transformer architecture with a window-based local attention mechanism, Mesh
Window Transformer (MWFormer). Experimental results demonstrate that MWFormer achieves the
best or competitive performance in both mesh classification and mesh segmentation tasks. Code will
be available.
1. Introduction

Mesh is one of the most common representations of 3D shapes
with three basic elements, i.e., vertices, edges, and faces. It natu-
rally conveys more topological and geometric information than
point cloud and can represent 3D objects’ surfaces effectively.
Thus, mesh data are widely used in the field of modeling and
rendering. Due to its wide range of applications, how to extract
representative features from meshes has become an attractive
topic in deep geometric learning.

Inspired by the great success of convolutional neural networks
(CNNs) in image processing [1–5], many recent works focus on
how to adapt CNN-based methods to 3D meshes. MeshCNN [6]
and SubdivNet [7] are representative works. MeshCNN [6] treats
edges as the input units and aggregates features from two ad-
jacent faces. SubdivNet [7] designs convolution and pooling op-
erations on faces directly, which can adapt popular 2D CNN
architectures to 3D mesh such as ResNet [1] and DeepLabv3+ [8].
However, the above methods naturally ignore the global con-
nectivity among mesh primitives due to the locality nature of
convolution operations.

∗ Corresponding author.
E-mail addresses: phy22@mails.tsinghua.edu.cn (H.-Y. Peng),

gmh20@mails.tsinghua.edu.cn (M.-H. Guo), lzhengning@gmail.com (Z.-N. Liu),
y.yang@cs.bath.ac.uk (Y.-L. Yang), taijiang@tsinghua.edu.cn (T.-J. Mu).
Unlike CNNs, the transformer architecture, originating from
the natural language processing (NLP) field [9], can extract the
global relationships among all the input tokens with the self-
attention mechanism and makes great success in the domains of
2D vision [10–12] and point cloud [13,14]. Though transformers
can be naturally applied to meshes by treating each mesh face as
a token, analogous to a pixel/patch in image or a point in point
cloud, the original self-attention has a quadratic computational
complexity w.r.t. the number of input tokens. Hence it is urgent
to design a new way to generate tokens with reduced quantity
while maintaining the original information for practical deep
mesh learning.

Many influential transformer models in image processing do-
mains have a down-sampling hierarchical architecture to achieve
both effectiveness and efficiency. However, meshes do not own
an inherent hierarchical structure like images. So it is challenging
to process a mesh with straightforward down-sampling deep
networks due to its irregularity. SubdivNet [7] can only pro-
cess meshes with Loop subdivision sequence connectivity. Other
works like MeshCNN [6] adopt edge collapse pooling, which
can only aggregate features of adjacent mesh edges. Inspired by
ViT [10] which splits image grids into non-overlapping patches,
we propose a pooling operation based on breadth-first search
(BFS) to generate the input tokens for the transformer-based
neural networks. Specifically, we first sample faces as the initial

https://doi.org/10.1016/j.cag.2023.07.028
https://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2023.07.028&domain=pdf
mailto:phy22@mails.tsinghua.edu.cn
mailto:gmh20@mails.tsinghua.edu.cn
mailto:lzhengning@gmail.com
mailto:y.yang@cs.bath.ac.uk
mailto:taijiang@tsinghua.edu.cn
https://doi.org/10.1016/j.cag.2023.07.028

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
Fig. 1. The proposed pooling operation to convert irregular mesh data into
discrete tokens while maintaining all face features and locality. Features of faces
in the same color will be integrated into a new patch. The patch tokens can then
be processed by various transformer architectures.

patches and iteratively expand them in a BFS way until every face
is assigned to a certain patch. Then we aggregate all face features
within each patch to produce new features of patch, i.e., token.
The process is shown in Fig. 1. To add adjacency to patches, we
introduce neighborhood relationships to merge patches from the
origin adjacent relationships at the previous level. We regard two
patches as neighbors if any associated faces are adjacent.

The BFS pooling operations enable the use of hierarchical
transformer structures in the mesh domain. To demonstrate this,
we propose the MeshWindow Transformer(MWFormer). Inspired
by Swin-Transformer [11], MWFormer employs a window-based
transformer architecture capable of processing both global and
local information of given meshes based on the attention mech-
anism. Furthermore, We adopt a re-sample strategy to enhance
MWFormer’s ability to extract global connections across different
patch windows. We evaluate the effectiveness of MWFormer
on mesh classification and mesh segmentation tasks, all achiev-
ing the best or competitive performance compared to existing
methods.

The main contributions of this paper can be summarized as
follows:

(a) We designed a general pooling method, BFS-Pooling for
mesh learning, which can efficiently convert connected
meshes of various sizes into discrete tokens and naturally
build hierarchical neural network architectures.

(b) Based on the BFS-Pooling, we present MWFormer, a
transformer-based method for mesh processing that effec-
tively learns both the local and global representations for
mesh faces.

(c) We evaluated MWFormer’s performance on mesh classi-
fication and segmentation tasks and achieve competitive
results.

2. Related works

2.1. Deep learning on 3D representation

Numerous methods have been proposed to apply deep learn-
ing to 3D data. Some surveys [15,16] collected and categorized
these methods. Roughly, they can be divided into four branches
according to different data types including voxels, point clouds,
multi-view images, and meshes. There are also some methods
based on implicit functions.

The most direct way is to project 3D object into multiple 2D
images and adopt CNNs to process 2D images directly [17,18].
GVCNN [19] adopted a view-group-shape architecture to better
represent 3D shape information. Recently, SimpleView [20] pro-
posed a simple projection method with strong data augmentation
and achieved great success. However, the projected images are
from limited views, thus may lose key information of 3D shapes,
which may affect the final performance.

For voxel data, Voxnet [21] and 3D shapenets [22] directly
applied 3D CNNs on 3D volumetric data. Voxelnet [23] treated
point cloud data as voxel units and achieved prominent results on
3D object detection. However, the high computation and memory
overhead of volumetric data limit their capability.

To solve the above problem, some works aim to process
point clouds directly. PointNet [24] is the pioneering work that
used simple multi-layer perceptron (MLP) and pooling oper-
ation to process raw point cloud directly. After that, many
following works focused on processing raw point cloud data.
PointNet++ [25] introduced the hierarchical architecture and local
information by using furthest point sampling(FPS) and neighbor-
hood aggregation. DGCNN [26], PointCNN [27] and KPConv [28]
defined various convolution operations on points based on their
geometric features. Besides, PCT [13] utilized the strong capability
of transformer for point cloud. Sun et al. [29] introduced a mul-
tilevel consistent semi-supervised method to leverage unlabeled
data in segmentation tasks.

More recently, implicit function methods have emerged in
3D deep learning. Deepsdf [30] and Local Implicit Grid [31] uti-
lized the signed distance function (SDF) to represent and recon-
struct 3D scenes. Occupancy networks [32] learned classifiers
with the continuous occupancy function to represent mesh sur-
faces. NeRF [33] used MLPs to reconstruct density and color infor-
mation from sparse input images. Following works NSVF [34] and
FastNeRF [35] greatly reduced the time consumption of training
original NeRF with better performance. These implicit methods
mainly focus on 3D reconstruction and view synthesis instead of
3D classification and segmentation tasks for now.

2.2. Deep learning on mesh

Mesh structure consists of three parts: vertices, edges, and
faces. Various deep learning methods are proposed by considering
these three primitives as the primary data, while some other
works focus on the spectral domain [36]. Some methods focus
on how to properly process features of certain vertices and their
neighbors. Masci et al. [37], Boscaini et al. [38] and MoNet [39]
parameterized each geodesic patch into 2D domains. Based on
the geodesic methods, PFCNN [40] selected tangent planes to
extend standard convolutions. TextureNet [41] designed a 4-Rosy
parameterization to carry out convolutions on mesh surfaces.
DiffusionNet [42] adopted local diffusion operations based on the
Laplacian operator to better represent surfaces. HodgeNet [43]
also extended the Laplacian operators and designs an end-to-end
architecture with sparse operators to extract mesh features.

One mesh edge connects two vertices and is adjacent to two
triangular faces and four neighboring edges in a 2-manifold mesh.
Based on this, MeshCNN [6] used relative edge features as inputs
and designed a permutation-invariant convolution operation on
adjacent edges. PD-MeshNet [44] performed attention-based con-
volutions and pooling operations on a pair of graphs built on the
input mesh. Other than convolution operations, MeshWalker [45]
adopted Recurrent Neural Network (RNN) to extract geometric
features on edges based on multiple random walks.

Face-based methods treat mesh faces as input units and fo-
cus on how to capture and aggregate local face features more
effectively. MeshNet [46] proposed a convolution operation that
extracts both spatial and structural features from faces while
aggregating features of adjacent faces by concatenation. Subdi-
vNet [7] introduced subdivision sequences and general convo-
lution operations on mesh faces. DNF-Net [47] extracted face
patches with multi-scale embedding units to denoise meshes.
The above methods mainly focus on how to efficiently extract
local features and ignore the global relationship among mesh
primitives. Moreover, some methods such as SubdivNet have
strict requirements, i.e., the input mesh must be watertight and
have Loop subdivision sequence connectivity, which restricts its

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
Fig. 2. (a) The architecture of the MWFormer’s classification model with n transformer blocks. The input mesh is encoded into a tensor in the shape of |F | × 13 and
then sent to MWFormer. The output of the model is in the shape of nclass . (b) The architecture of our transformer block.
performance on low-quality meshes. With our BFS-Pooling op-
eration, our MWFormer can handle more general meshes with-
out such constraints. The transformer architecture also enables
MWFormer to capture the global relationships among all mesh
faces.

2.3. Transformer in deep learning

Self-attention is a special attention mechanism which is pro-
posed by Lin et al. [48] for visualizing and interpreting sen-
tence embeddings. After that, many self-attention models (trans-
formers) [9,49–51] have quickly made great achievements in
various natural language processing tasks. Recently, Dosovit-
skiy et al. [10] introduced the first transformer structure called
vision transformer (ViT) into computer vision, and obtained ex-
cellent performance in image classification. Then some vari-
ants [11,13,52] showed big potential to replace convolutional
neural networks (CNNs), making transformer the state-of-the-
art framework in computer vision. Recently, transformer-based
models also demonstrated their strong performance on 3D vision
tasks [13,14,53]. Graphormer [54] introduced a general trans-
former architecture with effective graph encoding into Graph
Neural Network (GNN). Katam [55] stacked transformer blocks
to process mesh vertices in mesh segmentation tasks. Trans-
formesh [56] encoded a sequence of hippocampi meshes and ap-
plied transformers to process them. Compared to these methods,
our proposed generic mesh pooling operations can be incorpo-
rated into different variants of transformers in MWFormer, which
can be applied to both mesh classification and segmentation
tasks. Readers are referred to the recent surveys [57–59] for a
more comprehensive review.

3. Mesh transformers with BFS pooling

In this section, we first introduce how we process raw input
meshes. Then we detail how to tokenize a mesh into a patch-like
representation by sampling and pooling. Finally, we describe the
design of our MWFormer with a hierarchical architecture, and a
CSA module for segmentation tasks.

3.1. Overall design

Given a connected triangular mesh M = (V , E, F) as input,
we treat its faces F as our initial input units because mesh
faces contain rich topological and geometric information. Drawn
from SubdivNet [7] and MeshNet [46], we extract both spatial
descriptors and structure descriptors to better characterize each
face. The initial face feature consists of the following components:
• Face area A ∈ R: the area of a triangular face;
• Face normal n ∈ R3: the normal of a triangular face;
• Face center c ∈ R3: the center of a triangular face;
• Face angles (a1, a2, a3) ∈ R3: the combination of three

angles of a triangular face;
• Face curvatures (κ1, κ2, κ3) ∈ R3: the inner products of three

vertex normal and the face normal.

We sort the face angles and curvatures for alignment. Other
features, such as face colors, can be added for different tasks.
After this process, each mesh face is expressed in the form of a
13-dimensional vector if we choose to use all features and the
input mesh can then be represented as a tensor of size (N, 13),
where N = |F | is the number of faces of the input mesh. The
input tensor is then fed into stacked convolution layers to obtain
a more semantic representation and larger receptive fields by
aggregating local information. Afterward, the faces are divided
into multiple patches by using the proposed BFS-Pooling algo-
rithm. Each patch contains a bundle of adjacent faces and inherits
the connection of faces with other patches, making it possible
to apply convolution kernels to them. The discrete patches will
then be sent to the transformer backbones to generate mesh
features. The architecture of our transformer blocks is shown in
Fig. 2(b). It follows the conventional transformer structure which
consists of a self-attention module and a feed-forward module.
Before the start of the next transformer stage, MWFormer will
generate new patches in a down-sampling way, which forms
a hierarchical architecture. The whole network architecture for
mesh classification is shown in Fig. 2(a). MWFormer can also
handle other mesh-related tasks such as mesh segmentation with
minor modifications.

3.2. Mesh tokenization with BFS-Pooling

Transformer is a powerful architecture that is capable of
adapting to different input data and capturing the global con-
nections among input tokens. However, transformer requires the
input data in the shape of a discrete token sequence. As for
2D vision, it is easy to directly apply transformers because 2D
images consist of ordered discrete RGB pixels and have a clear
boundary, which simplifies the work to patch the input images
with rectangles of fixed size. But for 3D meshes, it is difficult to
decide how to embed the meshes into tokens effectively with a
down-sampling hierarchical architecture. To this end, we propose
a BFS-Pooling operation to generate mesh patches by sampling
faces and tokenizing them with pooling.

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
3.2.1. Sampling
We sample Np faces as patch centers and expand them by BFS

to generate all the patches. To enable effective learning, we try to
generate a uniform size distribution for mesh patches like grid-
patches in 2D where patches are embedded with the same feature
size. We thus sample the initial faces uniformly.

We propose Furthest Face-center Sampling (FFS), which oper-
ates similarly to Furthest Point Sampling (FPS) widely used in 3D
point cloud processing. FFS calculates the distances among face
centers and maintains the regularity of sampling, with the center
of the initial face serving as the center of the patch. Like FPS, FFS
maintains a distance table. FFS iteratively selects the face farthest
from already sampled faces by querying the table. The sampled
face is added to the initial face list, and then FFS updates the
distance table accordingly. Similar to FPS, FFS can also be applied
to patches.

3.2.2. BFS-Pooling for mesh patches
To achieve down-sampling aggregation for meshes, we pro-

pose a non-overlapping pooling operation based on the BFS algo-
rithm. Analogous to the patches split uniformly in 2D images, the
initial face of each patch is generated by uniform sampling and
then BFS is employed to fill each patch, making all patches have
a similar size.

Formally, we propose our BFS algorithm in Algorithm 1 with
python-like pseudo codes. The BFS algorithm starts from the
initial faces Finit sampled by the FFS algorithm proposed in Sec-
tion 3.2.1 and the face adjacency matrix Madj. Faces not in Finit
are set unmarked. Nremain represents the number of unexpanded
faces and is initialized as the number of faces. Each patch expands
an unmarked face in turns and we use queues Qfaces to store ex-
panded faces of each patch, where fhead indicates the head face of
the queue. fhead will be set as the next recorded face in the queue
if all its adjacent faces fadj have already been marked. The BFS-
pooling process continues until every face has been associated
with a patch.

3.2.3. Patch tokenization with feature aggregation
After we obtain which patch the faces belong to, we need to

aggregate all the face features to generate a new patch token rep-
resenting the feature of the patch. Due to different face numbers
of patches, we cannot adopt concatenation-based aggregation in
our method. In practice, we use the average pooling and addition
to aggregate all the face features.

3.3. Mesh Window TransFormer - MWFormer

After being processed by the pooling operations proposed in
Section 3.2, the features are organized in a discrete token form
Fp ∈ RNp×d, which can be directly processed by traditional
transformer architecture.

A conventional transformer block contains two modules: one
is the self-attention module and the other is the feed-forward
module. Given an input feature Fin in the shape of Nt × C where
Nt stands for the number of tokens and C stands for the channel
length of each token feature, the transformer block first sends it
to the self-attention (SA) module. The SA module is permutation-
invariant and generates the query (Q), key (K), and value (V)
matrices from Fin with linear layers. Then the query and key
matrices can be used to calculate an attention map. After nor-
malization, the attention map can be treated as a weight matrix
A. The output of the SA module Fout is the product of the attention
map and value matrix. All the processes can be described using
the terminology below [9]:

Q , K , V = F W (1)
in qkv
Algorithm 1 BFS Patch Expanding

Input: The list of sampled initial face of each patch Finit , the
matrix used to describe faces’ adjacency Madj, the number of
patches Np.

Output: Qfaces recording the affiliation of faces and patches.
1: Set all Qfaces patch queues to empty and append faces in Finit

to each Qfaces respectively.
2: Assign fhead to the initial face in each patch and Nremain to the

number of faces.
3: while Nremain > 0 do
4: for i in range(Np) do
5: Found = False
6: while fhead[i] != NONE (consider expandable patches only)

do
7: for fadj in Madj[fhead] do
8: if fadj has not been expanded then
9: mark fadj expanded

10: Qfaces[i].append(fadj)
11: Nremain -= 1
12: Found = True
13: break
14: end if
15: end for
16: if Found is True then
17: break (expand the next patch)
18: end if
19: if there is no succeeding face in the queue Qfaces[i] then
20: fhead[i] = NONE
21: else
22: fhead[i] = the next face recorded in Qfaces[i]
23: end if
24: end while
25: end for
26: end while

Â = (QKT)/
√
da (2)

A = softmax(Â) (3)

Fout = AV (4)

where
√
da is a scaling factor. The SA module is self-adaptive and

capable of capturing the global relationships among all the input
tokens.

A very important learning strategy of transformers in the im-
age vision domain is to combine pixel values with the positional
encoding (PE) to distinguish different patches. In practice, both
relative PE and absolute PE can improve transformer models’
performance on various tasks. In our MWFormer, we already
initialize our input tensor with the center coordinates of faces,
which can provide intrinsic positional knowledge. Hence we do
not apply additional PE to the proposed MWFormer.

3.3.1. Hierarchical MWFormer
Many neoteric transformer architectures are presented in a

hierarchical design by down-sampling the tokens, which requires
neighborhood information of tokens. While down-sampled 2D
image grids still remain token-wise connectivity, the connectivity
of our embedded mesh patch tokens is ambiguous. Using the
face adjacency information, we define that two newly generated
patches are adjacent when any face or patch belonging to them
is adjacent. An example of hierarchical down-sampling is shown
in Fig. 3. However, it is hard to decide the k-nearest neighbors
of the patches. As for 3D point clouds, PCT [13] uses Euclidean
distance to determine the nearest neighbors of a certain point

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
Fig. 3. The hierarchical architecture. The face patches inherit connection re-
lationships from original meshes, which enables them to be continuously
processed by the pooling operation to generate new patches from previous face
patches.

Fig. 4. The attention map (top row) from our MWFormer and corresponding
mesh segmentation results (bottom row) of the COSEG-Vases dataset [60]. We
normalize the attention map of the red faces and set a threshold to filter faces
with low attention weights. We color the faces with high correlation in blue.

to implement a hierarchical architecture. However, simply using
Euclidean distance to measure the distance of mesh patches to
get their neighbors will lose the topological information provided
by original meshes. This is because two face patches close in
Euclidean distance may actually be in different parts of the mesh.
Instead, we measure the distance D of two patches by the number
of faces along the shortest path (across edges) connecting these
two patches. With the distance D, we can get neighbor relation-
ships on mesh surfaces. Also, it is easy to compute D with the
adjacent information of patches.

After this process, the discrete patches are converted into
a non-directed graph, which makes the down-sampling in the
patch space possible. In this way, we can deploy multiple trans-
former stages to enhance MWFormer’s ability for feature extrac-
tion.

By using the pooling operation designed in Section 3.2 and
the definition of connectivity among patch tokens, we can finally
deploy hierarchical transformers on input meshes.

3.3.2. Window-based local attention mechanism
Although conventional transformer structures are effective in

extracting global information of meshes and patches, they lack
emphasis on the face locality, which can negatively impact the
model’s performance because local topological and spatial knowl-
edge is vital in mesh learning. To address this issue, we introduce
a window-based local attention mechanism to the mesh domain,
which is why our model is named Mesh Window Transformer
(MWFormer). Specifically, MWFormer will perform self-attention
within patches of the same window. When the number of win-
dows is 1, the transformer structure of MWFormer is equivalent
to the conventional ViT [10] structure in the image domain. To
clearly demonstrate how transformer structures of MWFormer
capture global relationship among faces, we visualize the distri-
butions of attention weights in the mesh segmentation task in
Fig. 4, where faces belonging to the same part as the selected face
should have high attention weights.

In order to generate local windows for face patches, we utilize
a sampling approach as it is challenging to achieve both a fixed
window size and non-overlapping partitions at the same time.
Fig. 5. Structures of MWFormer. (a) MWFormer with the window size being
4. Windows are colored differently. (b) We use adjacent faces (green) in the
convolution operation.

Our proposed Furthest Face-center Sampling (FFS) algorithm is
used to sample the centers of each attention window, which are
then expanded to the given window size. However, since FFS
sampling algorithm cannot guarantee absolute uniformity and
faces the problem of overlapping, the product of the window’s
quantity and the window size k + 1 needs to be larger than the
number of patches to better cover all patches. After performing
the self-attention operations within each window, we project the
features in the windows back to the original patches. Due to
the possibility of overlapping windows, we perform an addition
aggregation on those overlapped patches. We present how we
generate windows in Fig. 5(a) when window size is 4.

It can be noticed that MWFormer can now better utilize local
information, but may lose the ability to grasp global connections
of all patches, which is the main advantage of transformer-based
structures. To tackle this problem, we propose a re-sampling
strategy that is performed in each training step. Specifically, we
re-sample the centers of windows, allowing MWFormer to learn
relationships between patches from different adjacent zones and
propagating features of certain patches to all other patches. This
approach enables MWFormer to better capture both local and
global information, resulting in improved performance in mesh
classification and segmentation tasks.

3.4. Cross-Stage Attention Block

As for mesh segmentation tasks, the process of transforming
features of patches back to original faces is crucial. To better
aggregate information of different transformer stages, we propose
a Cross-Stage Attention(CSA) Block. CSA applies attention opera-
tions on patches of different levels simultaneously. To avoid high
computation overheads, we do not include original face features
in the CSA block. Combining features of all patch stages helps
MWFormer to better learn their global connections. Following the
CSA block, a simple U-Net structure is used to generate the final
segmentation results.

3.5. Enhance the locality with convolution

Transformer is powerful at extracting global relationships of
face patches. However, simply using transformers will lead to ig-
norance of neighborhood information, which has been proven to
be valuable in MeshCNN [6] and SubdivNet [7]. So we incorporate
the convolution operation into our network architecture to enable
MWFormer to better extract and aggregate local features for both
meshes and patches.

The convolution operation can be described as below:

Conv(fi) = w0 · ei + w1 ·

∑
ej + w2 ·

∑
(|ej − ei|), (5)
fj∈Ω(fi) fj∈Ω(fi)

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
Fig. 6. Convolution layer is inserted after the transformer block to better extract
local features.

where Ω(fi) means the adjacent faces of the face fi, and w0, w1, w2
are the learnable kernel parameters. The whole convolution op-
eration is permutation invariant. Since transformer models can
effectively learn global geometric features, we just use adjacent
faces to extract local information. We show how the convolution
operation is carried out on given red faces in Fig. 5(b). We also
present the structure of a single stage in Fig. 6.

4. Experiments

In this section, we show the generality of MWFormer by con-
ducting quantitative experiments. We evaluate the performance
of our MWFormer on mesh classification and mesh segmentation
tasks. The MWFormer’s architecture is implemented on the Jittor
deep learning framework [61].

4.1. Data process and augmentation

Mesh objects in the same dataset may have different sizes.
Following MeshCNN [6] and SubdivNet [7], we normalize the
input meshes into the unit cube space. Then we randomly re-
scale the input meshes with a Gaussian noise whose mean µ =

1 and std σ = 0.1. Since the orientation of 3D mesh objects also
plays an important role and some orientations are missed in the
segmentation datasets, we randomly rotate meshes in three axes
with an Euler angle in {

π
2 , π, 3π

2 } for segmentation tasks.

4.2. Implementation details

We adopt the Adam optimizer in all tasks. As for the classifi-
cation task on the SHREC11 [62] datasets, we set the number of
transformer stages in MWFormer to 2 and the window number
to 1. For classification tasks on the Manifold40 [7] dataset, we
set the stage numbers to 3 with 128 to 32 patches with window
size being 8. Following SubdivNet [7], we use area, curvatures,
and angles as the input features for the SHREC dataset and all
five input features for Manifold40. For segmentation tasks on
COSEG [60] datasets, we set the transformer block numbers to
2, 2, 6 with 512, 128, and 32 patches and window size being 8.
The patches are divided by 4 following Loop division.

4.3. Mesh classification

We conduct mesh classification experiments on two public 3D
mesh datasets: SHREC11 [62] and Manifold40 [7].
Table 1
Mesh classification accuracy on SHREC11 dataset.
Method Split-16 Split-10 Split-1

MeshCNN [6] 98.6% 91.0% –
PD-MeshNet [44] 99.7% 99.1% –
MeshWalker [45] 98.6% 97.1% –
HodgeNet [43] 99.2% 94.7% –
DiffusionNet [42] – 99.7% –
SubdivNet [7] 100% 99.5% 36.5%

MWFormer 100.0% 100.0% 41.7%

Table 2
Mesh classification accuracy on Manifold40 dataset.
Method Manifold40

MeshWalker [45] 90.5%
MeshNet [46] 88.4%
SubdivNet [7] 91.2%

MWFormer 92.2%

4.3.1. SHREC11
SHREC11 [62] dataset contains 600 mesh objects of 30 differ-

ent classes. We use the split settings provided in MeshCNN [6]
and evaluate our MWFormer’s learning ability on two protocols:
Split-10 with half of the samples in the training set and Split-
16 with 80% of the samples in the training set. The quantitative
results compared with other competitors are shown in Table 1.
Our MWFormer can achieve 100% classification accuracy under
both protocols, notably without the need of voting strategy like
SubdivNet [7]. The results show that by introducing global rela-
tionships to mesh learning, the models can better extract features
of meshes to categorize them more accurately. Combining the
local features with global relationships also helps learning the 3D
mesh representation.

We also evaluate our method under the SHREC’s Split-1 pro-
tocol, where the training dataset only contains 1 sample for each
class to show the transfer learning capability of MWFormer in
the few-shot scenario. We initialize our network with parameters
from models trained on the Manifold40 dataset and compare
the result with SubdivNet [7] in Table 1. The results show that
with transformer architectures’ strong ability in transfer learning
and prior global geometric knowledge, MWFormer can produce
promising results in few-shot learning.

4.3.2. Manifold40
Manifold40 [7] reconstructs all meshes from ModelNet40 [22]

into 2-manifold and watertight meshes with the same number of
faces, i.e. 500. The classification task on Manifold40 is challeng-
ing due to the reconstruction error and simplification distortion
introduced by the remeshing process. We compare the classifi-
cation results with other networks on the Manifold40 dataset in
Table 2. It can be seen that MWFormer can achieve competitive
results on this dataset. This shows that the global relationships
learned by transformer architectures can help MWFormer to have
a more holistic understanding of meshes while methods with
small perceptive fields stuck in the reconstruction errors and
simplification distortion.

4.4. Mesh segmentation

We also test our MWFormer on 3D mesh shape segmentation
tasks. We train MWFormer on three COSEG datasets [60] to
predict the part probability of each face in the mesh.

COSEG datasets consist of three large subsets: aliens, vases,
and chairs. Following MeshCNN [6], we split the datasets into a
train/test split of 85%/15%. We trained our MWFormer on these

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
Table 3
Mesh segmentation accuracy on three COSEG datasets.
Method Chairs Vases Aliens

MeshCNN [6] 91.1% 90.0% 93.5%
HodgeNet [43] 95.7% 90.3% 96.0%
PD-MeshNet [44] 95.1% 93.4% 96.7%
SubdivNet [7] 96.3% 95.9% 96.3%

MWFormer 99.0% 95.4% 97.5%

Fig. 7. Comparisons of the segmentation results on COSEG datasets under
different settings.

datasets. We re-trained MeshCNN [6], PD-MeshNet [44] and Sub-
divNet [7] on the new face labels and dataset splits with their
settings for comparison. The quantitative results are shown in
Table 3 and the visualized results under different settings are pre-
sented in Fig. 7, demonstrating that our MWFormer can achieve
better or competitive performance. It can be observed that the
locality introduced by the local self-attention in MWFormer al-
lows for a better understanding of complex meshes, like those
in COSEG-Chairs and COSEG-Aliens datasets. Some meshes in
COSEG datasets are not manifold (e.g. with odd face numbers),
but with BFS pooling and transformer, our MWFormer can be
directly applied on them without preprocessing these meshes
like SubdivNet [7]. We also showcase mesh segmentation results
along with mesh patch partitions in Fig. 8. It can be observed
that faces belonging to patches across different parts can be
segmented accurately with geometric and topologic information
extracted by MWFormer and the CSA module.

4.5. Ablation study

4.5.1. Input features
As described in Section 3.1, there are five available features

that can be added to the input. We conduct experiments on the
classification and segmentation tasks to show the influence of
different input features. The results are shown in Table 4. We
observed that for different datasets, the combination of these
features should also vary. Specifically, for small datasets like
SHREC11-10, just using parts of the input features can have a
better performance because it may ease the overfitting in trans-
former models. However, for big datasets with more categories
like Manifold40 and segmentation tasks requiring face labels,
incorporating more input features can improve the model’s cov-
erage and better represent the intrinsic information of meshes.
Table 4
Different input features will influence MWFormer’s performance.
Datasets Full inputs Inputs w/o face center and normal

SHREC-10 95.7% 100.0%
Manifold40 92.2% 80.2%
Aliens 97.5% 94.1%
Chairs 99.0% 96.6%
Vases 95.4% 93.0%

Table 5
Segmentation results of MWFormer on the COSEG-chairs dataset. The FLOPs is
the amount of computation in transformer blocks processing a single mesh.
Method Accuracy MFLOPs

With pooling operation (2 blocks in the last stage) 98.6% 531.24
With pooling operation (4 blocks in the last stage) 98.8% 556.53
Without pooling operation 98.8% 3557.38

Fig. 8. The visualization of segmentation results along with the patch partitions.

4.5.2. Pooling operation
One main contribution of MWFormer is to present a BFS pool-

ing operation to convert mesh shapes into face patches. Here we
consider a special case where each patch only contains one face.
In this situation, MWFormer does not perform the pooling oper-
ation and can better preserve the geometric information of the
original meshes. However, the computational cost and memory
consumption is significantly increased. We conduct experiments
on mesh segmentation with and without the pooling process to
show the efficiency and performance of the BFS pooling opera-
tion. We set transformer block numbers of MWFormer without
pooling operations all to 2. As for MWFormer with BFS-pooling,
we only set different block numbers in the last stage. The results
are shown in Table 5.

It can be observed that maintaining the original structure
of mesh shapes leads to a marginal improvement in the per-
formance of mesh segmentation tasks with the same network
architecture. However, it will consume a lot of memory resources,
so MWFormer cannot run with large networks without pool-
ing. With our pooling operation, we can adjust the number of
transformer blocks in stages with smaller patch numbers, which
can better aggregate high-level mesh features with little com-
putational and memory overheads. It is also worth noting that

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
Table 6
Performance with and without random sampling in each transformer stage.
Dataset Fixed sampling Re-sampling

Manifold 86.7% 92.2%
COSEG-Vases 92.4% 95.4%

Table 7
Segmentation results on COSEG datasets with and w/o convolution operations.
Datasets With convs w/o convs

Aliens 97.5% 97.4%
Chairs 99.0% 98.8%
Vases 95.4% 95.3%

Table 8
Accuracy with different window settings.
Dataset Acc.all patches Acc.window size = 8

SHREC11–10 100.0% 98.7%
Manifold40 91.2% 92.2%

MWFormer with pooling operations can achieve the same perfor-
mance with less than 1/6 of the computational cost in transformer
blocks.

4.5.3. Random sampling on each stage
As explained above in Section 3.3.2, we re-sample patches

before every transformer stage in each training iteration to intro-
duce more global connections to MWFormer and alleviate the loss
of face information. To evaluate the effectiveness of our proposed
sampling method, we compare the results with fixed sampling
points on the same classification and segmentation tasks. Results
are shown in Table 6.

It can be observed that, with fixed sampling points in each
level of the transformer stage, the performance of MWFormer
drops dramatically. This means that the information loss caused
by fixed sampling is severe to the training of MWFormer’s trans-
former architecture.

4.5.4. Convolution blocks
To show how convolution blocks can help mesh learning, we

conduct experiments on COSEG datasets with and without the
convolution blocks after each transformer block and list results in
Table 7. The results show that even for MWFormer which already
introduces locality in their transformer blocks, incorporating con-
volution operations can enhance the ability to aggregate mesh
features in adjacent patches by adding more locality into the
models to help MWFormer learn mesh structures better.

5. Discussion

5.1. Performance with different window number

The window number of the MWFormer is set as a hyperpa-
rameter. If the window number is 1, the whole model becomes
the same as ViT. When the window number increases, more local
information can be extracted in attention steps. We show the
performance of MWFormer with different window numbers in
Table 8.

As we can observe, the performance of MWFormer indeed
varies with the window number. For small datasets like SHREC11
[62], MWFormer with only one window achieves the best perfor-
mance. This is because MWFormer may capture excessive local
information in the local attention stages, leading to overfitting
of transformer blocks when trained on small datasets and finally
degrading the performance. However, for larger datasets like
Manifold40, the strong locality introduced by the local attention
assists MWFormer in achieving more competitive results.
Table 9
Running time on Manifold40 dataset.
Method Python C++ Speed boost

MWFormer 6.31 s 0.104 s 60.67x

5.2. Running speed

While MWFormer runs models on GPUs, it is hard to use in-
terfaces provided by deep learning frameworks to implement BFS
pooling operations. So we try to implement these operations with
Python and find out that these operations become the bottleneck
of the training and testing phases. To address these problems we
implement these operations using C++ instead and get drastic
improvement in running speed. We test the time taken to run
1 iteration of training on the Manifold40 datasets with batch_size
= 32 on a single NVIDIA 3090 GPU and list the time in Table 9 to
better demonstrate this.

5.3. Limitations

The distance metric D we use in BFS-pooling limits MW-
Former’s performance in processing meshes with multiple dis-
connected components due to the undefined distance among
them. Moreover, as for large scene segmentation like ScanNet
[63], the time taken to process meshes with hundreds of thou-
sands of faces is too high to be acceptable because the sampling
algorithm and transformer architecture itself are both sensitive
to the input face numbers. Besides, training and testing on these
meshes require extra processes like scene cropping, which can
influence MWFormer’s performance because such processes will
limit transformers’ reception field to small crops.

6. Conclusions

In this paper, we introduce MWFormer, a transformer-based
architecture for 3D mesh deep learning that can handle both
local and global connections of mesh face patches. We propose
a BFS-based pooling operation to convert a connected mesh into
discrete patches. The patches inherit the geometric information of
the original mesh, which makes them suitable to be processed by
hierarchical transformer-based backbones. We conduct extensive
experiments on mesh classification and mesh segmentation tasks,
showing that MWFormer can produce competitive results on
these tasks. We envisage that MWFormer can be helpful in more
relative applications such as medical model segmentation and
geometric analysis.

As for future research, we aim to improve MWFormer’s ef-
ficiency and performance. Currently, the BFS pooling operation
and k-NN searching are implemented on the CPU. This will lead
to frequent data transfers between GPU and CPU, which slows
down the training process. Additionally, the presented sampling
algorithm cannot guarantee the sampled faces to be an ideal uni-
form distribution. By adopting a more uniform sampling method,
such as Lloyd’s algorithm, we can perform the BFS pooling on
more balanced patches which may further improve MWFormer’s
performance.

Finally, given the recent progress in transformer architectures
and the flexibility of the BFS pooling operation, it is straightfor-
ward to extend these new transformer models in image domains
for 3D mesh learning. This may significantly enhance the under-
standing of 3D shapes and benefit complex downstream tasks in
this field, such as open-vocabulary and large-scene segmentation
tasks.

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
Authorship contribution statement

Hao-Yang Peng: Conceptualization, Methodology, Software,
Visualization, Data curation, Writing – original draft. Meng-Hao
Guo: Conceptualization, Methodology, Writing – original draft.
Zheng-Ning Liu: Conceptualization, Validation. Yong-Liang Yang:
Validation, Writing – review & editing. Tai-Jiang Mu: Conceptu-
alization, Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (2021ZD0112902), and the
National Natural Science Foundation of China (Grant No.
62220106003, 61902210).

References

[1] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
In: IEEE conference on computer vision and pattern recognition (CVPR).
2016, p. 770–8.

[2] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. In: International conference on learning representations
(ICLR). 2015.

[3] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D,
Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: IEEE
conference on computer vision and pattern recognition (CVPR). 2015, p.
1–9.

[4] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected
convolutional networks. In: IEEE conference on computer vision and
pattern recognition (CVPR). 2017, p. 4700–8.

[5] Guo M-H, Lu C-Z, Liu Z-N, Cheng M-M, Hu S-M. Visual attention network.
2022, arXiv preprint arXiv:2202.09741.

[6] Hanocka R, Hertz A, Fish N, Giryes R, Fleishman S, Cohen-Or D. Meshcnn:
a network with an edge. ACM Trans Graph 2019;38(4):1–12.

[7] Hu S-M, Liu Z-N, Guo M-H, Cai J-X, Huang J, Mu T-J, Mar-
tin RR. Subdivision-based mesh convolution networks. ACM Trans Graph
2022;41(3):25:1–25:16.

[8] Chen L-C, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution
for semantic image segmentation. 2017, arXiv preprint arXiv:1706.05587.

[9] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł,
Polosukhin I. Attention is all you need. In: Advances in neural information
processing systems (NeurIPS). 2017, p. 5998–6008.

[10] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T,
Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. An
image is worth 16x16 words: Transformers for image recognition at scale.
In: International conference on learning representations (ICLR). 2021, URL:
https://openreview.net/forum?id=YicbFdNTTy.

[11] Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. Swin
transformer: Hierarchical vision transformer using shifted windows. In:
IEEE/CVF international conference on computer vision (ICCV). 2021, p.
9992–10002.

[12] Wang W, Xie E, Li X, Fan D-P, Song K, Liang D, Lu T, Luo P, Shao L. PVT v2:
Improved baselines with pyramid vision transformer. Comput Vis Media
2022;8(3):415–24.

[13] Guo M-H, Cai J, Liu Z-N, Mu T-J, Martin RR, Hu S-M. PCT: Point cloud
transformer. Comput Vis Media 2021;7(2):187–99.

[14] Zhao H, Jiang L, Jia J, Torr PH, Koltun V. Point transformer. In: IEEE/CVF
international conference on computer vision (CVPR). 2021, p. 16259–68.

[15] Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P. Geometric
deep learning: going beyond euclidean data. IEEE Signal Process Mag
2017;34(4):18–42.

[16] Xiao Y-P, Lai Y-K, Zhang F-L, Li C, Gao L. A survey on deep geom-
etry learning: From a representation perspective. Comput Vis Media
2020;6(2):113–33.
[17] Su H, Maji S, Kalogerakis E, Learned-Miller E. Multi-view convolutional
neural networks for 3d shape recognition. In: IEEE international conference
on computer vision (ICCV). 2015, p. 945–53.

[18] Qi CR, Su H, Nießner M, Dai A, Yan M, Guibas LJ. Volumetric and multi-view
cnns for object classification on 3d data. In: IEEE conference on computer
vision and pattern recognition (CVPR). 2016, p. 5648–56.

[19] Feng Y, Zhang Z, Zhao X, Ji R, Gao Y. GVCNN: Group-view convolutional
neural networks for 3D shape recognition. In: IEEE/CVF conference on
computer vision and pattern recognition (CVPR). 2018, p. 264–72.

[20] Goyal A, Law H, Liu B, Newell A, Deng J. Revisiting point cloud shape clas-
sification with a simple and effective baseline. In: International conference
on machine learning (ICML). 2021, p. 3809–20.

[21] Maturana D, Scherer S. Voxnet: A 3d convolutional neural network for real-
time object recognition. In: IEEE/RSJ international conference on intelligent
robots and systems (IROS). 2015, p. 922–8.

[22] Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3D shapenets: A deep
representation for volumetric shapes. In: IEEE conference on Computer
Vision and Pattern Recognition (CVPR). 2015, p. 1912–20.

[23] Zhou Y, Tuzel O. Voxelnet: End-to-end learning for point cloud based 3d
object detection. In: IEEE/CVF conference on computer vision and pattern
recognition (CVPR). 2018, p. 4490–9.

[24] Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for
3d classification and segmentation. In: IEEE/CVF conference on computer
vision and pattern recognition (CVPR). 2017, p. 652–60.

[25] Qi CR, Yi L, Su H, Guibas LJ. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In: Advances in neural information
processing systems (NeurIPS), Vol. 30. 2017, p. 5099–108.

[26] Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM. Dy-
namic graph cnn for learning on point clouds. ACM Trans Graph (TOG)
2019;38(5):146:1–146:12.

[27] Li Y, Bu R, Sun M, Wu W, Di X, Chen B. Pointcnn: Convolution on x-
transformed points. In: Advances in neural information processing systems
(NeurIPS), Vol. 31. 2018, p. 828–38.

[28] Thomas H, Qi CR, Deschaud J-E, Marcotegui B, Goulette F, Guibas LJ.
Kpconv: Flexible and deformable convolution for point clouds. In: IEEE/CVF
international conference on computer vision (ICCV). 2019, p. 6411–20.

[29] Sun C-Y, Yang Y-Q, Guo H-X, Wang P-S, Tong X, Liu Y, Shum H-Y. Semi-
supervised 3D shape segmentation with multilevel consistency and part
substitution. Comput Vis Media 2023;9(2):229–47.

[30] Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S. Deepsdf: Learning
continuous signed distance functions for shape representation. In: IEEE/CVF
conference on computer vision and pattern recognition (CVPR). 2019, p.
165–74.

[31] Jiang C, Sud A, Makadia A, Huang J, Nießner M, Funkhouser T, et al. Local
implicit grid representations for 3d scenes. In: IEEE/CVF conference on
computer vision and pattern recognition (CVPR). 2020, p. 6001–10.

[32] Mescheder L, Oechsle M, Niemeyer M, Nowozin S, Geiger A. Occupancy
networks: Learning 3d reconstruction in function space. In: IEEE/CVF
conference on computer vision and pattern recognition (CVPR). 2019, p.
4460–70.

[33] Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R.
Nerf: Representing scenes as neural radiance fields for view synthesis. In:
European conference on computer vision (ECCV). 2020, p. 405–21.

[34] Liu L, Gu J, Zaw Lin K, Chua T-S, Theobalt C. Neural sparse voxel fields.
In: Advances in neural information processing systems (NeurIPS), Vol. 33.
2020, p. 15651–63.

[35] Garbin SJ, Kowalski M, Johnson M, Shotton J, Valentin J. Fastnerf: High-
fidelity neural rendering at 200fps. In: IEEE/CVF international conference
on computer vision (CVPR). 2021, p. 14346–55.

[36] Lemeunier C, Denis F, Lavoué G, Dupont F. Representation learning of
3D meshes using an Autoencoder in the spectral domain. Comput Graph
2022;107:131–43.

[37] Masci J, Boscaini D, Bronstein M, Vandergheynst P. Geodesic convolu-
tional neural networks on riemannian manifolds. In: IEEE international
conference on computer wision workshops. 2015, p. 37–45.

[38] Boscaini D, Masci J, Rodolà E, Bronstein M. Learning shape correspondence
with anisotropic convolutional neural networks. In: Advances in neural
information processing systems (NeurIPS), Vol. 29. 2016, p. 3189–97.

[39] Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein MM. Geometric
deep learning on graphs and manifolds using mixture model cnns. In: IEEE
conference on computer vision and pattern recognition (CVPR). 2017, p.
5115–24.

[40] Yang Y, Liu S, Pan H, Liu Y, Tong X. PFCNN: Convolutional neural networks
on 3D surfaces using parallel frames. In: IEEE/CVF conference on computer
vision and pattern recognition (CVPR). 2020, p. 13578–87.

[41] Huang J, Zhang H, Yi L, Funkhouser T, Nießner M, Guibas LJ. Texturenet:
Consistent local parametrizations for learning from high-resolution signals
on meshes. In: IEEE/CVF conference on computer vision and pattern
recognition (CVPR). 2019, p. 4440–9.

http://refhub.elsevier.com/S0097-8493(23)00158-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb1
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb2
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb3
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb4
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb4
http://arxiv.org/abs/2202.09741
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb6
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb6
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb6
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb7
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb7
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb7
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb7
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb7
http://arxiv.org/abs/1706.05587
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb9
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb9
https://openreview.net/forum?id=YicbFdNTTy
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb11
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb12
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb12
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb12
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb12
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb12
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb13
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb13
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb13
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb14
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb15
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb16
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb16
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb16
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb16
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb16
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb17
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb18
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb18
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb18
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb18
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb18
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb19
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb20
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb20
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb20
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb20
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb20
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb21
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb21
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb21
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb21
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb21
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb22
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb22
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb22
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb22
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb22
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb23
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb23
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb23
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb23
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb23
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb24
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb24
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb24
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb24
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb24
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb25
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb25
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb25
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb25
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb25
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb26
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb27
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb27
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb27
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb27
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb27
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb28
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb28
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb28
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb28
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb28
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb29
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb29
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb29
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb29
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb29
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb30
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb31
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb31
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb31
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb31
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb31
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb32
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb33
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb34
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb35
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb36
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb37
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb37
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb37
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb37
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb37
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb38
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb39
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb40
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb40
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb40
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb40
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb40
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb41
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb41

H.-Y. Peng, M.-H. Guo, Z.-N. Liu et al.
[42] Sharp N, Attaiki S, Crane K, Ovsjanikov M. DiffusionNet: Discretization
agnostic learning on surfaces. ACM Trans Graph (TOG) 2022;41(3):27:1–
27:16.

[43] Smirnov D, Solomon J. HodgeNet: learning spectral geometry on triangle
meshes. ACM Trans Graph 2021;40(4):1–11.

[44] Milano F, Loquercio A, Rosinol A, Scaramuzza D, Carlone L. Primal-dual
mesh convolutional neural networks. In: Advances in neural information
processing systems (NeurIPS), Vol. 33. 2020.

[45] Lahav A, Tal A. Meshwalker: Deep mesh understanding by random walks.
ACM Trans Graph 2020;39(6):1–13.

[46] Feng Y, Feng Y, You H, Zhao X, Gao Y. Meshnet: Mesh neural network
for 3d shape representation. In: AAAI conference on artificial intelligence
(AAAI), Vol. 33. 2019, p. 8279–86.

[47] Li X, Li R, Zhu L, Fu C-W, Heng P-A. DNF-Net: A deep normal filtering
network for mesh denoising. IEEE Trans Vis Comput Graphics (TVCG)
2021;27(10):4060–72.

[48] Lin Z, Feng M, dos Santos CN, Yu M, Xiang B, Zhou B, Bengio Y. A structured
self-attentive sentence embedding. In: International conference on learning
representations (ICLR). 2017, URL: https://openreview.net/forum?id=BJC_
jUqxe.

[49] Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In: Conference of the
North American chapter of the association for computational linguistics:
Human language technologies (NAACL-HLT). 2019, p. 4171–86.

[50] Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV. Xlnet:
Generalized autoregressive pretraining for language understanding. In:
Advances in neural information processing systems (NeurIPS), Vol. 32.
2019, p. 5754–64.

[51] Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakan-
tan A, Shyam P, Sastry G, Askell A, et al. Language models are few-shot
learners. In: Advances in neural information processing systems (NeurIPS),
Vol. 33. 2020, p. 1877–901.

[52] Wang W, Xie E, Li X, Fan D, Song K, Liang D, Lu T, Luo P, Shao L. Pyramid
vision transformer: A versatile backbone for dense prediction without
convolutions. In: IEEE/CVF international conference on computer vision
(ICCV). 2021, p. 548–58.
[53] Lin K, Wang L, Liu Z. End-to-end human pose and mesh reconstruction
with transformers. In: IEEE/CVF conference on computer vision and pattern
recognition (CVPR). 2021, p. 1954–63.

[54] Ying C, Cai T, Luo S, Zheng S, Ke G, He D, Shen Y, Liu T-Y. Do transformers
really perform badly for graph representation? In: Advances in neural
information processing systems (NeurIPS), Vol. 34. 2021, p. 28877–88.

[55] Katam H. 3D mesh segmentation using transformer based graph oper-
ations. Tech. Rep., Technische Universität München; 2021, URL: https:
//elib.dlr.de/140566/.

[56] Sarasua I, Pölsterl S, Wachinger C, Neuroimaging AD, et al. Transformesh: A
transformer network for longitudinal modeling of anatomical meshes. In:
International workshop on machine learning in medical imaging. Springer;
2021, p. 209–18.

[57] Guo M-H, Xu T-X, Liu J-J, Liu Z-N, Jiang P-T, Mu T-J, Zhang S-H, Martin RR,
Cheng M-M, Hu S-M. Attention mechanisms in computer vision: A survey.
Comput Vis Media 2022;8(3):331–68.

[58] Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C,
Xu Y, Yang Z, Zhang Y, Tao D. A survey on vision transformer. IEEE Trans
Pattern Anal Mach Intell (PAMI) 2022;1. http://dx.doi.org/10.1109/TPAMI.
2022.3152247.

[59] Guo M-H, Liu Z-N, Mu T-J, Liang D, Martin RR, Hu S-M. Can attention
enable MLPs to catch up with CNNs? Comput Vis Media 2021;7(3):283–8.

[60] Wang Y, Asafi S, Van Kaick O, Zhang H, Cohen-Or D, Chen B. Active
co-analysis of a set of shapes. ACM Trans Graph 2012;31(6):1–10.

[61] Hu S-M, Liang D, Yang G-Y, Yang G-W, Zhou W-Y. Jittor: a novel deep
learning framework with meta-operators and unified graph execution. Sci
China Inf Sci 2020;63(12):1–21.

[62] Lian Z, Godil A, Bustos B, Daoudi M, Hermans J, Kawamura S, Kurita Y,
Lavoué G, Van Nguyen H, Ohbuchi R, et al. SHREC’11 track: Shape retrieval
on non-rigid 3D watertight meshes. In: 3DOR@ Eurographics. 2011, p.
79–88.

[63] Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: IEEE conference
on computer vision and pattern recognition. CVPR, 2017, p. 5828–39.

http://refhub.elsevier.com/S0097-8493(23)00158-9/sb42
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb42
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb42
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb42
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb42
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb43
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb43
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb43
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb44
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb44
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb44
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb44
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb44
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb45
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb45
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb45
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb46
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb46
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb46
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb46
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb46
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb47
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb47
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb47
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb47
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb47
https://openreview.net/forum?id=BJC_jUqxe
https://openreview.net/forum?id=BJC_jUqxe
https://openreview.net/forum?id=BJC_jUqxe
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb49
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb49
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb49
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb49
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb49
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb49
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb49
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb50
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb50
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb50
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb50
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb50
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb50
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb50
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb51
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb51
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb51
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb51
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb51
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb51
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb51
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb52
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb52
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb52
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb52
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb52
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb52
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb52
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb53
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb53
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb53
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb53
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb53
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb54
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb54
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb54
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb54
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb54
https://elib.dlr.de/140566/
https://elib.dlr.de/140566/
https://elib.dlr.de/140566/
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb56
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb56
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb56
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb56
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb56
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb56
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb56
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb57
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb57
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb57
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb57
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb57
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb59
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb59
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb59
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb60
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb60
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb60
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb61
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb61
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb61
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb61
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb61
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb62
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb62
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb62
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb62
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb62
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb62
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb62
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb63
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb63
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb63
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb63
http://refhub.elsevier.com/S0097-8493(23)00158-9/sb63

	MWFormer: Mesh Understanding with Window-based Transformer
	INTRODUCTION
	RELATED WORKS
	Deep Learning on 3D Representation
	Deep learning on mesh
	Transformer in deep learning

	MESH TRANSFORMERS WITH BFS POOLING
	Overall Design
	Mesh Tokenization with BFS-Pooling
	Sampling
	BFS-Pooling for Mesh Patches
	Patch Tokenization with Feature Aggregation

	Mesh Window TransFormer - MWFormer
	Hierarchical MWFormer
	Window-Based Local Attention Mechanism

	Cross-Stage Attention Block
	Enhance the Locality with Convolution

	EXPERIMENTS
	Data Process and Augmentation
	Implementation Details
	Mesh Classification
	SHREC11
	Manifold40

	Mesh Segmentation
	Ablation Study
	Input features
	Pooling operation
	Random sampling on each stage
	Convolution blocks

	DISCUSSION
	Performance with different window number
	Running speed
	Limitations

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

