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Abstract. We present a new method of extracting multi-scale salien-
t features on meshes. It is based on robust estimation of curvature on
multiple scales. The coincidence between salient feature and the scale
of interest can be established straightforwardly, where detailed feature
appears on small scale and feature with more global shape information
shows up on large scale. We demonstrate this multi-scale description
of features accords with human perception and can be further used for
several applications as feature classification and viewpoint selection. Ex-
periments exhibit that our method as a multi-scale analysis tool is very
helpful for studying 3D shapes.

1 Introduction

Due to the fast development of 3D scanning and modeling technology, triangular
meshes are now widely used in computer graphics. Objects with fruitful surface
details can be well captured and constructed into mesh form. The interests in
analyzing the geometric information of meshes are ever increasing. This is the
most important step for a variety of applications in computer graphics, computer
vision and geometric modeling, such as shape retrieval, shape alignment, feature
preserved simplification etc.

In shape analysis, the key is how to define intrinsic features which can well
represent the model’s characteristic. To ensure the intrinsic property, the fea-
tures are often required to be invariant under rigid transformation and uniform
scaling. Moreover, the extracted feature should be discriminative to other mod-
els especially with different type. Based on different feature definition, shape
analysis method can be generally classified into two categories: global and lo-
cal [1]. The former one focuses on describing the entire shape of the model with
a so-called “shape descriptor”. The methodology of 3D statistics like shape dis-
tribution and histogram are usually involved, while local geometric details are
not concerned much. On the other hand, local method defines features based on
local surface properties. Curvature and its related quantities are often used here.

There have been several publications about determining saliency or extract-
ing salient features on meshes in the recent years. [2] defined a measure of mesh
saliency using a center-surround operator on Gaussian-weighted mean curva-
tures. This work incorporates insights from human perception, while the extrac-
tion of interesting feature parts is not their concern. [3] defined salient feature as
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Fig. 1. Multi-scale salient feature extraction. (a) Grog model; (b) Gaussian curvature
on small and large scales (from top to bottom, similarly hereinafter); (c) Local surface
descriptors on small and large scales; (d) Salient features extracted accordingly.

region with high importance and non-trivial local shapes. They proposed to ex-
tract salient features based on curvature from local fitting, but there is no scale
specialty of features considered here. Shilane et al. [4] presented a novel method
to select regions that distinguish a shape by not only judging the shape itself. It
is based on performing a shape-based search using each region as a query into
a database. This method can reasonably select the regions which successfully
discriminate the model with others, but the precondition is the availability of a
shape retrieval environment. Recently, Chen et al. [5] investigated the so-called
‘schelling points’ on 3D surface. These points have to be manually selected by
the users beforehand on a training data set. Then features can be predicted on
new shapes based on the prior knowledge.

In this paper, we present a method of extracting salient geometric features
on multiple scales. It is more likely to analyze local shape properties, while
global shape information is taken into account when the scale of interest becomes
large (see Fig. 1). Although the definition of salient feature is also based on
curvature and its variance, the curvature estimation is performed in a multi-



scale way. The salient features extracted on different scales represent different
level of surface details. We show that the scale specialty of salient features can
help us to understand the surface shape more comprehensively.

The rest of the paper is organized as follows: In Section 2, we will describe
the procedure of multi-scale salient feature extraction in detail. Two interest-
ing applications which benefit from our method will be presented in Section 3.
Finally, we conclude our paper in Section 4 and discuss some of the future work.

2 Multi-scale salient feature extraction

In this section, we present our multi-scale salient feature extraction algorithm
in detail. For the geometric meaning of salient feature, we adapt to use the
definition in [3], where salient feature is defined as compound high-level feature
of non-trivial local shapes. Compared with the features represented per mesh
vertex (cf. [2]), it conveys much more shape information of the local geometry.
In their definition, the criterion of the salient local shape is related to its saliency
and interestingness which is determined by curvature and its variance. However,
the curvature information they used is from local fitting and no scale specialty
is taken into account. In our paper, we propose to extract the salient geometric
feature based on curvature estimated on different scales. In this way, we can
further judge the feature property whether it belongs to the surface detail or it
represents surface more globally.

2.1 Multi-scale curvature estimation

Instead of computing curvature based on local quadric fitting, we use multi-scale
curvature estimation in [6]. The principal curvatures and the principal frame are
estimated by principal component analysis (PCA) of local neighborhoods defined
via spherical kernels centered on the given surface. The neighborhood radius r
can be naturally treated as the scale of interest. In this paper, we use PCA of the
ball neighborhood for multi-scale curvature estimation for all examples. Fig. 2
shows the maximal principal curvature of the Asian Dragon model estimated on
two different scales. Note that the scale features are more apparently recognized
on the small scale.

2.2 Local surface descriptor generation

Based on the multi-scale curvature information which has been successfully es-
timated, a sparse set of local surface descriptors (LSD) will be built across the
mesh surface afterwards. Each LSD is a surface point p and its associated quadric
patch that approximate the surface in a local neighborhood of p [3]. This kind of
LSD has many advantages: adaptive to the geometry of the shape, independent
of the underlying triangulation, heavily reduce the complexity of the original
triangle mesh representation and ease of clustering non-trivial salient features.



Fig. 2. Multi-scale maximal principal curvatures on the Asian Dragon model, with two
different kernels centered at one of its horn. The red color depicts the highest curvature
value, blue color is for lowest value.(upper: small scale; bottom: large scale.)

In [3], the LSD of a surface point p is built based on the geometric error
between the local surface patch and the fitting quadric. However, in our method,
the curvatures are estimated using PCA of local neighborhoods. In this case, the
small shape variance can be neutralized on a large scale (see Fig. 2), which means
the geometry itself can not reflect the change of the scale. So instead of using
vertex coordinates, we build the LSD based on the curvature information, which
is correlated with the scale of interest.

We also use the region-growing technique to iteratively generate the LSDs.
First, we sort all the mesh vertices according to their curvature function value
Curv(p) in descending order. The curvature function can be chosen depending
on the model’s property. Commonly we choose the absolute Gaussian curvature,
and for CAD models, the maximal absolute principal curvature will be used
(see [3]). Then we build the LSDs one by one from the sorted list. For a vertex
p in the list which hasn’t been in any LSD, we extract its associated quadratic
patch in a way different from local fitting.

As discussed in Section 2.1, based on PCA of local neighborhood of a surface
point p, we get three eigenvectors which form its local principal frame on scale
r besides principal curvatures κ1 and κ2. Then we form the paraboloid P : z =
1
2 (κ1x

2 + κ2y
2) in principal frame as the second order approximation of the

surface at p on the given scale. To generate the LSD from p, we greedily involve
its neighbor vertices and integrate the error of Gaussian curvature over the local
area until the prescribed threshold is reached. Suppose q is one of its neighbor,
we can get the local coordinates of q by projecting it into p’s principal frame.
Then we only use the local x, y coordinates qx and qy to compute the Gaussian

curvature K̂q
G of the local osculating paraboloid as in Equ. (1).

K̂q
G =

κ1κ2
[1 + (κ1qx)2 + (κ2qy)2]2

(1)

The error of the Gaussian curvature can then be estimated as the difference
between K̂q

G and Kq
G = κq1 · κq2, where κq1 and κq2 are the principal curvatures

of q estimated in Section 2.1. Note that in this way, we don’t involve local
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Fig. 3. Local surface descriptors of Gargoyle model on two different scales. Red is high
curvature function value and blue is low. Zoomed figures show the tiny structure and
starting point of each LSD. (left: small scale; right: large scale.)

z coordinate, this can eliminate the error of LSD caused by the local shape
variance when the scale becomes large.

In our implementation, for the model less than 100K faces, we use 0.3 of
its largest absolute Gaussian curvature times the average area per-vertex as the
threshold. For large models, we set the ratio to 1.0. After a single LSD with
starting point p is extracted, we assign it with the largest curvature function
value, i.e. Curv(p), as the representative curvature value.

Fig. 3 shows the local surface descriptors of Gargoyle model on two different
scales. We can find the LSDs on small scale follow the surface detail (the ring-
like shape) better, while descriptors representing global curved shape are salient
on large scale (see also zoom-in parts).

2.3 Salient feature extraction

The definition of saliency or salient feature is the foundation of distinctiveness
analysis of 3D shapes. Due to its generality and our purpose of extracting multi-
scale salient feature regions, we adapt to use the definition and measurement of
salient feature in [3]. They define salient feature as a cluster of LSDs that locally
describe a non-trivial region of the surface.

For each LSD, we grow a cluster of descriptors by recursively adding its neigh-
boring descriptors until the saliency grade of the clustered feature is maximized.
This greedy process stops when the contribution of a candidate descriptor is in-
significant. The saliency grade of a feature cluster is determined by the curvature
function value of each LSD and its variance over the cluster. We refer readers
to [3] for the details.

When the whole surface has been decomposed into feature clusters, the ones
with high saliency grade will be extracted as salient geometric features. This can
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Fig. 4. Feature classification of camel model based on salient feature extraction on
two different scales. (a) the classified salient features with different colors on small
scale; (b) the 2D projection of the salient feature space computed using classical multi-
dimensional scaling; (c) the classified salient features on large scale.

be done by a prescribed threshold of the saliency grade value or the percentage
of salient features among all clusters. Since concave feature is usually generated
by adjacent meaningful convex parts [7], we suppress its saliency grade so that
the inherent salient feature can be successfully extracted. The results of salient
feature extraction of Grog model on two different scales can be found in Fig. 1.

3 Results and discussion

3.1 Multi-scale feature classification.

Our feature classification is based on multi-scale salient features in Section 2.
The goal is to classify salient features on different scales according to their global
shapes, i.e. the salient features which have similar shape will be grouped into
the same class. We believe this way of multi-scale salient feature extraction and
classification will give us a comprehensive understanding of 3D models.

In our method, we use spin-image [8] as the shape signature for each salient
feature extracted from a 3D model. The resemblance between salient features is
measured by their spin-images. A full distance matrix is generated afterward-
s. Then we extract a 2D embedding of the salient feature space using multi-
dimensional scaling [9]. From the feature space, we obtain a meaningful classifi-
cation of salient features.

Fig. 4(a) shows the salient feature classification results of Camel model on
small scale. We can see the meaningful body parts like ears, toes, heels, mouth,
tail and joint of front legs are successfully classified as in Fig. 4(b). The classifi-
cation results on large scale of the same Camel model can be found in Fig. 4(c).
The salient features capture more global interesting shape of the surface. Toes
and heels are merged to whole foot features.



Fig. 5. Multi-scale viewpoints selected on two different scales for Gargoyle model (left:
large scale; right: small scale).

3.2 Multi-scale viewpoint selection.

Based on our multi-scale salient feature extraction, we can do the viewpoint
selection on multiple scales. In our approach, different viewpoint is determined
by visible surface saliency on different scales. The visual effect is like observing
an object from far to near. On large scale, features with some global shape
information show up, while more details of an object are revealed on small scale.
The intuition behind our approach is that people tend to notice global shape
features of an object at first and then pay attention to more detailed ones. Thus,
our approach helps to provide an informative illustration of a 3D object, with
global and detailed features visible on different scales.

In our method, we define the saliency of a mesh vertex v as S(F )/Size(F ),
where F is the salient feature which contains vertex v, S(F ) is the saliency
grade of F , Size(F ) is the number of vertices that belong to F . For vertex
which doesn’t belong to any salient feature, the saliency value is 0. After that,
we search for the viewpoint which maximizes the sum of saliency of all visible
vertices. To avoid the sharp variance of saliency between neighboring viewpoint,
here we set top 50% feature clusters as salient features.

Fig. 5 shows two optimal salient viewpoints of the Gargoyle model, which
are selected on large and small scale respectively. Note that the two wings of
Gargoyle model are more visible on large scale, while the detailed features (e.g.
the rings) are more attractive on small scale.

3.3 Implementation details

Our multi-scale salient feature extraction algorithm is implemented in C++ on
a windows platform. In all our experiments, we scaled the models to fit into



a bounding box with maximal length 2. On small scale, the radius of the ball
neighborhood is set to 0.03 and on large scale it is 3 ∼ 4 times larger.

We test our algorithm on an Intel Core2 Duo 2.66GHz computer with 2GB
RAM. For Camel model with 70K triangles, the average cost of salient feature
extraction on a single scale is 38.9s. For Grog model with 200k triangle, the cost
is 40.5s. The curvature estimation step takes most of the time. On the other
hand, the extraction of local surface descriptors and salient features are much
more efficient due to the greedy approach, these two processes can be done within
5 seconds for all test models.

4 Conclusion and future work

In this paper, we presented a new method of multi-scale salient feature extrac-
tion. The salient features extracted on small scale represent the surface detail
while more global interesting salient regions can be extracted on large scale. This
kind of multi-scale description of features accords with human perception from
different scales of interest. We also applied the multi-scale salient feature ex-
traction to feature classification and viewpoint selection, both applications show
that our method as a multi-scale analysis tool is very helpful for studying 3D
shapes.

We want to apply the multi-scale salient feature extraction to a wider usage
like in shape matching, where different models can be compared on different
scales. Models have details in common have more similarity on small scale while
models with similar global features are expected to be matched on large scale.
We believe this kind of multi-scale feature based shape matching is favorable of
further applications like modeling by example and shape retrieval.
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